【總結(jié)】第4講定積分與微積分的基本定理★知識(shí)梳理★1、定積分概念定積分定義:如果函數(shù)在區(qū)間上連續(xù),用分點(diǎn),將區(qū)間等分成幾個(gè)小區(qū)間,在每一個(gè)小區(qū)間上任取一點(diǎn),作和,當(dāng)時(shí),上述和無限接近某個(gè)常數(shù),這個(gè)常數(shù)叫做函數(shù)在區(qū)間上的定積分,記作,即,這里、分別叫做積分的下限與上限,區(qū)間叫做積分區(qū)間,函數(shù)叫做被積函數(shù),叫做積分變量,叫做被積式.2、定積分性質(zhì)(1);
2024-08-26 05:56
【總結(jié)】返回后頁前頁§8微分中值定理與導(dǎo)數(shù)的應(yīng)用二、典型例題一、內(nèi)容提要習(xí)題課返回后頁前頁一、內(nèi)容提要1.理解羅爾(Rolle)定理和拉格朗日(Lagrange)定理.2.了解柯西(Cauchy)定理和泰勒(Taylor)定理.3.理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)
2025-04-29 06:27
【總結(jié)】微積分基本定理bxxxxxann????????1210?],[1iiixx???任取???niixf1)(?做和式:常數(shù))且有,(/))((lim10Anabfniin??????復(fù)習(xí):1、定積分是怎樣定義?設(shè)函數(shù)f(x)在[a,b]上連續(xù),在[a,b]中任意插
2025-04-29 01:42
【總結(jié)】微積分基本定理微積分是研究各種科學(xué)的工具,在中學(xué)數(shù)學(xué)中是研究初等函數(shù)最有效的工具.恩格斯稱之為“17世紀(jì)自然科學(xué)的三大發(fā)明之一”.學(xué)習(xí)微積分的意義微積分的產(chǎn)生和發(fā)展被譽(yù)為“近代技術(shù)文明產(chǎn)生的關(guān)鍵事件之一,它引入了若干極其成功的、對(duì)以后許多數(shù)學(xué)的發(fā)展起決定性作用的思想.”微積分的建立,無
2025-01-19 21:34
【總結(jié)】bxxxxxann????????1210?],[1iiixx???任取???niixf1)(?做和式:常數(shù))且有,(/))((lim10Anabfniin??????復(fù)習(xí):1、定積分是怎樣定義?設(shè)函數(shù)f(x)在[a,b]上連續(xù),在[a,b]中任意插入n-1個(gè)分點(diǎn):
2025-05-04 22:34
【總結(jié)】第三章微分中值定理與導(dǎo)數(shù)的應(yīng)用主講人:張少強(qiáng)TianjinNormalUniversity計(jì)算機(jī)與信息工程學(xué)院三、其他未定式二、型未定式一、型未定式00第二節(jié)洛必達(dá)法則微分中值定理函數(shù)的性態(tài)導(dǎo)數(shù)的性態(tài)函數(shù)之商的極限導(dǎo)數(shù)之商的極限轉(zhuǎn)化(或
2024-07-29 16:17
【總結(jié)】題型、函數(shù)、導(dǎo)數(shù)、積分綜合性的使用微分中值定理寫出證明題,利用洛比達(dá)法則,進(jìn)行計(jì)算,計(jì)算導(dǎo)數(shù),求函數(shù)的單調(diào)性以及極值、最值,進(jìn)行二階求導(dǎo),求函數(shù)的凹凸區(qū)間以及拐點(diǎn),利用極限的性質(zhì),求漸近線的方程內(nèi)容一.中值定理二.洛比達(dá)法則一些類型(、、、、、、等)三.函數(shù)的單調(diào)性與極值四.函數(shù)的凹凸性與拐點(diǎn)五.函數(shù)的漸近線水平漸近
2025-03-25 01:54
【總結(jié)】2022/2/131作業(yè)P88習(xí)題5(1).7.8(2)(4).9(1).10(3).P122綜合題:4.5.復(fù)習(xí):P80——88預(yù)習(xí):P89——952022/2/132應(yīng)用導(dǎo)數(shù)研究函數(shù)性態(tài)局部性態(tài)—未定型極限
2025-01-16 06:37
【總結(jié)】微積分基本定理(1)2020年12月24日星期四定積分的定義:一般地,設(shè)函數(shù)f(x)在區(qū)間[a,b]上有定義,將區(qū)間[a,b]等分成n個(gè)小區(qū)間,每個(gè)小區(qū)的長度為,在每個(gè)小區(qū)間上取一點(diǎn),依次為x1,x2,…….xi,….xn,作和如果無限趨近于
2024-11-17 15:36
【總結(jié)】二、高階導(dǎo)數(shù)的運(yùn)算法則第三節(jié)一、高階導(dǎo)數(shù)的概念機(jī)動(dòng)目錄上頁下頁返回結(jié)束高階導(dǎo)數(shù)第二章一、高階導(dǎo)數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運(yùn)動(dòng)機(jī)動(dòng)目錄上頁下頁返回結(jié)束定義.若函數(shù)
2025-04-29 01:58
【總結(jié)】第四節(jié)定積分與微積分基本定理(理)重點(diǎn)難點(diǎn)重點(diǎn):了解定積分的概念,能用定義法求簡單的定積分,用微積分基本定理求簡單的定積分.難點(diǎn):用定義求定積分知識(shí)歸納1.定積分的定義如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),用分點(diǎn)a=x0x1&l
2024-12-07 18:51
【總結(jié)】返回上頁下頁第一節(jié)微分中值定理一、羅爾定理定理1(羅爾(Rolle)定理)如果函數(shù)f(x)(1)在[a,b]上連續(xù),(2)在(a,b)內(nèi)可導(dǎo),(3)f(a)=f(b),則至少存在一點(diǎn)?∈(a,b),使得f?(?)=0.
2024-12-08 01:16
【總結(jié)】回顧曲邊梯形求面積的問題??badxxfA)(第八節(jié)定積分的幾何應(yīng)用曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成。abxyo)(xfy?abxyo)(xfy?提示若用A?表示任一小區(qū)間],[xx
2025-04-21 04:48
2025-05-14 21:42
【總結(jié)】1引例:一塊長方形的金屬板,四個(gè)頂點(diǎn)的坐標(biāo)是(1,1),(5,1),(1,3),(5,3).在坐標(biāo)原點(diǎn)處有一個(gè)火焰,它使金屬板受熱.假定板上任意一點(diǎn)處的溫度與該點(diǎn)到原點(diǎn)的距離成反比.在(3,2)處有一個(gè)螞蟻,問這只螞蟻應(yīng)沿什么方向爬行才能最快到達(dá)較涼快的地點(diǎn)?問題的實(shí)質(zhì):應(yīng)沿由熱變冷變化最驟烈的方向(即梯度方向)爬行.第七節(jié)方
2024-08-14 18:34