【總結(jié)】二次函數(shù)的應(yīng)用測試題(含答案)一.選擇題(共8小題)1.一個小球被拋出后,如果距離地面的高度h(米)和運(yùn)行時間t(秒)的函數(shù)解析式為h=﹣5t2+10t+1,那么小球到達(dá)最高點(diǎn)時距離地面的高度是( ?。〢.1米?B.3米?C.5米?D.6米2.某公司在甲、乙兩地同時銷售某種品牌的汽車.已知在甲、乙兩地的銷售利潤y(單位:萬元)與銷售量x(單位:輛)之
2025-06-23 21:18
【總結(jié)】二次函數(shù)的應(yīng)用——銷售問題知識回顧:1.拋物線的頂點(diǎn)坐標(biāo)是,當(dāng)=時,有最值為。2.拋物線的頂點(diǎn)坐標(biāo)是,當(dāng)=時,有最值為。3.拋物線的頂點(diǎn)坐標(biāo)是,當(dāng)=時,有最值為。售價(元/千克)506070銷售量y(千克)1008060?
2025-03-26 05:01
【總結(jié)】實(shí)際問題與二次函數(shù)現(xiàn)有60米的籬笆要圍成一個舉行場地;問題1若矩形的一邊長為10米,它的面積是多少?現(xiàn)有60米的籬笆要圍成一個矩形場地;問題2若矩形的長分別為15米、20米、25米時,它們的面積分別是多少?問題3從上面兩問,同學(xué)們發(fā)現(xiàn)了什么?你能找到籬笆圍成的矩形的最大面積嗎?
2024-11-06 21:12
【總結(jié)】二次函數(shù)練習(xí)題(一)時間t(秒)1234…距離s(米)281832…1、一個小球由靜止開始在一個斜坡上向下滾動,通過儀器觀察得到小球滾動的距離s(米)與時間t(秒)的數(shù)據(jù)如下表:寫出用t表示s的函數(shù)關(guān)系式.2、下列函數(shù):①;②;③;④;⑤,其中是二次函數(shù)的是,其中,,
2025-06-23 21:42
【總結(jié)】....二次函數(shù)易錯題專向練習(xí)一.選擇題(共8小題)1.函數(shù)y=與y=﹣kx2+k(k≠0)在同一直角坐標(biāo)系中的圖象可能是( ?。〢. B. C. D.2.如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:①abc>0;②b﹣a>c;③4a+2b
2025-06-23 13:56
【總結(jié)】二次函數(shù)圖像和性質(zhì)習(xí)題精選 一.選擇題(共30小題)1.已知a≠0,在同一直角坐標(biāo)系中,函數(shù)y=ax與y=ax2的圖象有可能是( ?。.B.C.D.2.函數(shù)y=ax2+1與y=(a≠0)在同一平面直角坐標(biāo)系中的圖象可能是( ) A.B.C.D. 3.已知拋物線y=ax2+bx和直線y=ax+
2025-06-27 12:37
【總結(jié)】二次函數(shù)應(yīng)用題1、某體育用品商店購進(jìn)一批滑板,每件進(jìn)價為100元,售價為130元,,根據(jù)市場調(diào)查,每降價5元,每星期可多賣出20件.(1)求商家降價前每星期的銷售利潤為多少元?(2)降價后,商家要使每星期的銷售利潤最大,應(yīng)將售價定為多少元?最大銷售利潤是多少?2、某商場將進(jìn)價為2000元的冰箱以2400元售出,平均每天能售出8臺,為
2025-06-23 18:44
【總結(jié)】二次函數(shù)應(yīng)用題1、某體育用品商店購進(jìn)一批滑板,每件進(jìn)價為100元,售價為130元,,根據(jù)市場調(diào)查,每降價5元,每星期可多賣出20件.(1)求商家降價前每星期的銷售利潤為多少元?(2)降價后,商家要使每星期的銷售利潤最大,應(yīng)將售價定為多少元?最大銷售利潤是多少?2、某商場將進(jìn)價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政
2025-06-19 07:57
【總結(jié)】1某商家獨(dú)家銷售具有地方特色的某種商品,每件進(jìn)價為40元.經(jīng)過市場調(diào)查,一周的銷售量y件與銷售單價x(x≥50)元/件的關(guān)系如下表:銷售單價x(元/件)…55607075…一周的銷售量y(件)…450400300250…(1)直接寫出y與x的函數(shù)關(guān)系式: ?。?)設(shè)一周的銷售利潤為S元,請求出S與x的函數(shù)
2025-03-24 06:13
【總結(jié)】二次函數(shù)知識經(jīng)典練習(xí)一、知識點(diǎn)之二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項系數(shù),而可以為零.二次函數(shù)的定義域是全體實(shí)數(shù).2.二次函數(shù)的結(jié)構(gòu)特征:⑴等號左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二次項系數(shù),是一次項系數(shù),是常數(shù)項.二、知識點(diǎn)之二次
2025-06-18 07:21
【總結(jié)】運(yùn)用二次函數(shù)的性質(zhì)求實(shí)際問題的最大值和最小值的一般步驟:?求出函數(shù)解析式和自變量的取值范圍?配方變形,或利用公式求它的最大值或最小值。?檢查求得的最大值或最小值對應(yīng)的自變量的值必須在自變量的取值范圍內(nèi)。?頂點(diǎn)式,對稱軸和頂點(diǎn)坐標(biāo)公式:?利潤=售價-進(jìn)價.回味無窮:二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)
2025-05-13 16:24
【總結(jié)】二次函數(shù)應(yīng)用題分類解析二次函數(shù)是初中學(xué)段的難點(diǎn),學(xué)生學(xué)起來覺的比較的吃力,可以把應(yīng)用問題進(jìn)行分類:第一類:利用待定系數(shù)法對于題目明確給出兩個變量間是二次函數(shù)關(guān)系,并且給出幾對變量值,要求求出函數(shù)關(guān)系式,并進(jìn)行簡單的應(yīng)用。解答的關(guān)鍵是熟練運(yùn)用待定系數(shù)法,準(zhǔn)確求出函數(shù)關(guān)系式。例1.某公司生產(chǎn)的A種產(chǎn)品,它的成本是2元,售價是3元,年銷售量為100萬件,為了獲得更好的效益,公司準(zhǔn)備拿
2025-03-24 06:26
【總結(jié)】實(shí)際問題與二次函數(shù)教案實(shí)驗(yàn)中學(xué)李三紅教學(xué)目標(biāo):1.通過對實(shí)際問題情景的分析確定二次函數(shù)的表達(dá)式,并體會二次函數(shù)的意義。2.能用配方法或公式法求二次函數(shù)的最值,并由自變量的取值范圍確定實(shí)際問題的最值。復(fù)習(xí)回顧:1、二次函數(shù)的圖象是一條,
2024-11-23 12:40
【總結(jié)】 個性化學(xué)案二次函數(shù)綜合應(yīng)用題(拱橋問題)適用學(xué)科數(shù)學(xué)適用年級初中三年級適用區(qū)域全國課時時長(分鐘)60知識點(diǎn)二次函數(shù)解析式的確定、二次函數(shù)的性質(zhì)和應(yīng)用教學(xué)目標(biāo)。2學(xué)會用二次函數(shù)知識解決實(shí)際問題,掌握數(shù)學(xué)建模的思想,進(jìn)一步熟悉,點(diǎn)坐標(biāo)和線段之間的轉(zhuǎn)化。,體會到數(shù)學(xué)來源于生活,又服務(wù)于生活,感受數(shù)學(xué)的應(yīng)用價值。教學(xué)重點(diǎn),并能理解
【總結(jié)】 1.下列方程是一元二次方程的是( ?。〢.3x+1=0 B.5x2﹣6y﹣3=0 C.a(chǎn)x2﹣x+2=0 D.3x2﹣2x﹣1=02.關(guān)于x的一元二次方程x2+k=0有實(shí)數(shù)根,則( ?。〢.k<0 B.k>0 C.k≥0 D.k≤03.若關(guān)于x的方程2x2﹣ax+2b=0的兩根和為4,積為﹣3,則a、b分別為( )A.a(chǎn)=﹣8,b=﹣6 B.a(chǎn)=4,b=﹣3 C.a(chǎn)=
2025-06-18 23:26