【總結】第六節(jié)空間向量知識提要1.空間向量的概念:在空間,我們把具有和的量叫做向量。2.空間向量的運算。定義:與平面向量運算一樣,空間向量的加法、減法與數乘運算如下(如圖)。;;運算律:⑴加法交換律:⑵加法結合律:⑶數乘分配律:3.共線向量。(1)如果表示空間向量的有向線段所在的直線
2025-07-23 04:56
【總結】《》教案一、教學目標:1.知識目標:了解向量與平面平行的意義,掌握它們的表示方法。理解共線向量定理、共面向量定理和空間向量分解定理,理解空間任一向量可用空間不共面的三個已知向量唯一線性表示,會在簡單問題中選用空間三個不共面向量作為基底表示其他向量。會用空間向量的基本定理解決立體幾何中有關的簡單問題。2.能力目標:通過空間向量分解定理的得出過程,體會由特殊到一般,由低維到高維的思想
2025-04-17 07:36
【總結】空間向量知識點空間向量的有關概念和公式概念空間向量與平面向量的概念與性質相似,只是由二維平面拓展到三維空間如果一個向量所在直線垂直于一個平面,則該向量是這個平面的一個法向量。坐標表示,,.運算則,,,,定比分點公式設點P分有向線段所成的比為λ,即=λ,,,()中點公式:,,三角形重心公式:,,模,,則==;=
2025-04-04 04:29
【總結】課前探究學習課堂講練互動活頁規(guī)范訓練【課標要求】第3課時空間向量與空間角【核心掃描】理解直線與平面所成角的概念.能夠利用向量方法解決線線、線面、面面的夾角問題.體會用空間向量解決立體幾何問題的三步曲.向量法求解線線、線面、面面的夾角.(重點)線線、線面、面面的夾角與向量的應用.(難點
2025-01-15 06:07
【總結】空間向量與立體幾何解答題精選1已知四棱錐的底面為直角梯形,,底面,且,,是的中點(Ⅰ)證明:面面;(Ⅱ)求與所成的角;(Ⅲ)求面與面所成二面角的大小證明:以為坐標原點長為單位長度,如圖建立空間直角坐標系,則各點坐標為(Ⅰ)證明:因由題設知,且與是平面內的兩條相交直線,由此得面又在面上,故面⊥面(Ⅱ)解:因(Ⅲ)解:在上取一點
2025-06-23 04:04
【總結】空間向量的應用----求空間角與距離一、考點梳理,近幾年高考的立體幾何大題,在考查常規(guī)解題方法的同時,更多地關注向量法(基向量法、坐標法)在解題中的應用。坐標法(法向量的應用),以其問題(數量關系:空間角、空間距離)處理的簡單化,而成為高考熱點問題。可以預測到,今后的高考中,還會繼續(xù)體現法向量的應用價值。,其常用技巧與方法總結如下:1)求直線和直線所成的角若直線AB、C
2025-08-05 15:42
【總結】aABABaaABaAB平面向量空間向量具有大小和方向的量具有大小和方向的量幾何表示法幾何表示法字母表示法字母表示法向量的大小向量的大小長度為零的向量長度為零的向量模為1的向量模為1的向量長度相等且方向相反的向量長
2024-11-24 17:38
【總結】第九章空間向量專題復習制作人:焦明輝一復習回顧1平行六面體法則:(1)定義:如果表示空間向量的有向線段所在直線互相平行或重合,則這些向量叫做共線向量(或平行向量),記作(2)共線向量定理:對于空間任意兩個向量a、b(b=0),a//b的充要條件是存在實數λ使a=λb.(3)推論
2025-10-31 12:28
【總結】預習學案課堂講義課后練習工具第三章空間向量與立體幾何欄目導引預習學案課堂講義課后練習工具第三章空間向量與立體幾何欄目導引3.1空間向量及其運算預習學案課堂講義課后練習工具第三章空間向量與立體幾何欄目導引
2025-07-20 07:00
【總結】第三章空間向量與立體幾何單元測試(時間:90分鐘 滿分:120分)第Ⅰ卷(選擇題,共50分)一、選擇題:本大題共10小題,每小題5分,共50分.1.以下四組向量中,互相平行的組數為( )①a=(2,2,1),b=(3,-2,-2);②a=(8,4,-6),b=(4,2,-3);③a=(0,-1,1),b=(0,3,-3);④a=(-3,2,0),b=(4,-3,3)
2025-06-23 18:25
【總結】新課標高二數學同步測試(2-)圖一、選擇題:在每小題給出的四個選項中,只有一項是符合題目要求的,請把正確答案的代號填在題后的括號內(每小題5分,共50分).1.在平行六面體ABCD—A1B1C1D1中,M為AC與BD的交點,若=,=,=.則下列向量中與相等的向量是() A. B. C. D.2.在下列條件中,使M與A、B、C一定共面的是 ()
2025-06-22 16:23
【總結】立體幾何中的向量方法1.(2012年高考(重慶理))設四面體的六條棱的長分別為1,1,1,1,和,且長為的棱與長為的棱異面,則的取值范圍是 ( ?。〢. B. C. D.[解析]以O為原點,分別以OB、OC、OA所在直線為x、y、z軸,則,A,2.(2012年高考(陜西理))如圖,在空間直角坐標系中有直三棱柱,,則直線與直線夾角的余弦值為 ( )A.
2025-04-17 13:06
【總結】高中數學選修(2-1)空間向量與立體幾何測試題一、選擇題1.若把空間平行于同一平面且長度相等的所有非零向量的始點放置在同一點,則這些向量的終點構成的圖形是( ?。粒粋€圓 B.一個點 C.半圓 D.平行四邊形答案:A2.在長方體中,下列關于的表達中錯誤的一個是( ?。粒? B.C. D.答案:B3.若為任意向量,,下列等式不一
2025-06-23 03:41
【總結】平面向量與空間向量知識點對比內容平面向量空間向量定義既有大小,又有方向既有大小,又有方向表示方法(1)用有向線段表示;(2)用或a,b,c表示模向量的長度,用||或|a|表示零向量長度為0的向量,記為a單位向量模為1的向量叫做單位向量相等向量長度相等,方向相同的向量叫做相等向量相反向量長度相
2025-06-19 22:59
【總結】平面向量練習題一.填空題。1.等于________.2.若向量a=(3,2),b=(0,-1),則向量2b-a的坐標是________.3.平面上有三個點A(1,3),B(2,2),C(7,x),若∠ABC=90°,則x的值為________.、b滿足|a|=1,|b|=,(a+b)⊥(2a-b),則向量a與b的夾角為________.5.已知向量a=(
2025-06-23 18:41