【總結(jié)】1.立體幾何初步(1)空間幾何體①認(rèn)識柱、錐、臺、球及其簡單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡單物體的結(jié)構(gòu).②能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會用斜二測法畫出它們的直觀圖.③會用平行投影與中心
2025-06-16 12:13
【總結(jié)】教學(xué)目的與要求:①理解向量空間的定義②掌握向量空間的性質(zhì)第六章向量空間§重點(diǎn):向量空間的定義與性質(zhì)難點(diǎn):向量空間的定義關(guān)鍵:向量空間定義中的兩種運(yùn)算講授方式:講授一.定義和例子令是一個數(shù)域.中的元素用小寫拉丁字母來表示.令是
2025-08-05 04:13
【總結(jié)】立體幾何中的向量方法—求空間角?立體幾何這一考點(diǎn)在廣東高考試卷中占有很大比例,11年19分12年18分13年24分。這些題目也是我們?nèi)幦×η鬂M分的題目。主要考查三視圖問題,點(diǎn)線面位置關(guān)系問題,還有就是大題.大題主要有垂直、平行、角度、體積。對于角度問題,一直是一個難點(diǎn)。大體有兩種求法,一類是傳統(tǒng)方法,一做(找)二證三求,另一種方
【總結(jié)】模塊六向量代數(shù)與空間解析幾何(一)向量代數(shù)1.理解向量的概念,掌握向量的表示法,會求向量的模、非零向量的方向余弦和非零向量在軸上的投影。2.掌握向量的線性運(yùn)算(加法運(yùn)算與數(shù)量乘法運(yùn)算),會求向量的數(shù)量積與向量積。3.會求兩個非零向量的夾角,掌握兩個非零向量平行、垂直的充分必要條件。(二)平面與直線1.會求平面的點(diǎn)法
2025-01-19 01:01
【總結(jié)】微積分Ⅰ1第七章向量代數(shù)與空間解析幾何§曲面及其方程一、曲面方程的概念二、柱面四、二次曲面三、旋轉(zhuǎn)曲面五、小結(jié)微積分Ⅰ2第七章向量代數(shù)與空間解析幾何水桶的表面、臺燈的罩子面等.曲面在空間解析幾何中被看成是點(diǎn)的幾何軌跡.1、曲面方程的定義曲面的實(shí)例:
2025-01-19 08:41
【總結(jié)】第七章立體幾何第六節(jié)空間向量及其運(yùn)算抓基礎(chǔ)明考向提能力教你一招我來演練返回[備考方向要明了]考什么.,了解空間向量的基本定理及其意義,掌握空間向量的正交分解及其坐標(biāo)表示.
2025-05-03 08:38
【總結(jié)】空間角江蘇省南菁高級中學(xué)例1:長方體ABCD-A1B1C1D1,AB=AA1=2cm,AD=1cm,求異面直線A1C1與BD1所成的角。如圖,連B1D1與A1C1交于O1,M,512221=?=MA,23212212122211=??==BDMO,2512212211=?=OA由余弦定理得
2024-11-10 02:00
【總結(jié)】空間距離的計算學(xué)習(xí)目標(biāo):1.能借助空間幾何體內(nèi)的位置關(guān)系求空間的距離;2.能用向量方法解決點(diǎn)面、線面、面面的距離的計算問題,體會向量方法在研究幾何問題中的作用;3.探究題型,總結(jié)解法步驟。復(fù)習(xí)回顧:?,A(1,2,0),B(0,1,1),C(1,1,2)試求平面ABC的一個法向量.如
2025-08-05 15:42
【總結(jié)】本章優(yōu)化總結(jié)專題探究精講本章優(yōu)化總結(jié)知識體系網(wǎng)絡(luò)章末綜合檢測知識體系網(wǎng)絡(luò)專題探究精講空間向量與空間位置關(guān)系用向量方法證明平行與垂直問題的一般步驟是:(1)建立立體圖形與空間向量的關(guān)系,利用空間向量表示問題中所涉及到的點(diǎn)、線、面,把立體幾何問題轉(zhuǎn)化為空間向量問題.
2024-11-12 19:03
【總結(jié)】用空間向量解決立體幾何中的平行、垂直和夾角、距離問題一。知識再現(xiàn)空間向量:(1)空間直角坐標(biāo)系(2)向量的直角坐標(biāo)運(yùn)算(3)夾角和距離公式(1)空間直角坐標(biāo)系123aaiajak???若123(,,)aaaa?則(,,)OAxyz?111222(,,)
2025-05-01 06:59
【總結(jié)】空間向量的坐標(biāo)運(yùn)算——空間直角坐標(biāo)系.空間向量的直角坐標(biāo)運(yùn)算.單位正交基底,空間直角坐標(biāo)系,向量的坐標(biāo)xyzO(x,y,z)ijkPP’OP=OP’+P’P=Xi+yj+zk啟示:空間向量OP=(x,y,z)Xiyjzk則),(2211
2025-08-16 01:22
【總結(jié)】第二章§3&理解教材新知把握熱點(diǎn)考向應(yīng)用創(chuàng)新演練知識點(diǎn)一知識點(diǎn)二考點(diǎn)一考點(diǎn)二考點(diǎn)三3.1&空間向量的標(biāo)準(zhǔn)正交分解與坐標(biāo)表示空間向量基本定理學(xué)生小李
2025-06-12 19:01
【總結(jié)】第五章線性空間與線性變換§1線性空間的概念線性空間也是線性代數(shù)的中心內(nèi)容之一,本章介紹線性空間的概念及其簡單性質(zhì),討論線性空間的基和維數(shù)的概念,介紹線性變換的概念和線性變換的矩陣表示.一.數(shù)域(1)0,1?K;定義
2025-10-09 19:01
【總結(jié)】,第三章空間向量與立體幾何,3.2立體幾何中的向量方法第3課時空間向量與空間角,第一頁,編輯于星期六:點(diǎn)三十八分。,第二頁,編輯于星期六:點(diǎn)三十八分。,自,主,預(yù),習(xí),探,新,知,第三頁,編輯于星期六...
2025-10-13 19:07
【總結(jié)】回顧復(fù)習(xí)一、共線向量:1.共線向量:如果表示向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量.a(chǎn)平行于b記作//ab.規(guī)定:o與任一向量a是共線向量.2、共線向量定理對任意兩個向量a,b(a≠
2025-08-16 00:41