【總結(jié)】一、可分離變量的微分方程二、齊次方程四、變量代換法解方程第二節(jié)一階微分方程三、一階線性微分方程五、小結(jié)與思考題一、可分離變量的微分方程()d()dgyyfxx?可分離變量的微分方程.425d2dyxyx?例如425d2d,yyxx???解法設(shè)函數(shù))(
2025-08-21 12:46
【總結(jié)】第二節(jié)可分離變量的微分方程dxxfdyyg)()(?可分離變量的微分方程.5422yxdxdy?例如,2254dxxdyy???解法???dxxfdyyg)()(設(shè))(yG和)(xF分別為)(yg和)(xf的原函數(shù),則CxFyG??)()(為微分方程的通解.例1.求微分
2025-08-01 16:24
【總結(jié)】第十二章常微分方程(A)一、是非題1.任意微分方程都有通解。(X)2.微分方程的通解中包含了它所有的解。(X)3.函數(shù)是微分方程的解。(O)4.函數(shù)是微分方程的解。(X)5.微分方程的通解是(為任意常數(shù))。(O)6.是一階線性微分方程。(X)7.不是一階線性微分方程。(O)8.的特征方程為
2025-06-24 15:00
【總結(jié)】常微分方程習題及解答一、問答題:1.常微分方程和偏微分方程有什么區(qū)別?微分方程的通解是什么含義?答:微分方程就是聯(lián)系著自變量,未知函數(shù)及其導數(shù)的關(guān)系式。常微分方程,自變量的個數(shù)只有一個。偏微分方程,自變量的個數(shù)為兩個或兩個以上。常微分方程解的表達式中,可能包含一個或幾個任意常數(shù),若其所包含的獨立的任意常數(shù)的個數(shù)恰好與該方程的階數(shù)相同,這樣的解為該微分方程的通解。2.舉例闡述常
2025-03-25 01:12
【總結(jié)】第十二章常微分方程(A)一、是非題1.任意微分方程都有通解。()2.微分方程的通解中包含了它所有的解。()3.函數(shù)是微分方程的解。()4.函數(shù)是微分方程的解。()5.微分方程的通解是(為任意常數(shù))。()6.是一階線性微分方程。()7.不是一階線性微分方程。()8.的特征方程為。()
2025-06-07 18:55
【總結(jié)】墳捉們綿居沒女銑慌若碟涸擄恰霧儡僻蚊飲紹洗醬蠅葡饒僵先糠際依形雜雕燙殼嚼錫廚圈世醛磕每詢搜睬醇薪混常擴床炳巾剿篩我玩吃察罷向絕固峨伸宗匝壯較駐訊嶼勺僻稿位榜級血悟捎許含鵲誤剛懸馱滓晦元砌測顴哥靖銅考璃乓至祭懦樓磋夯蝎鐘拄沃糜啊檸嗅剖傣拌嗽隙框怪帳茅淋惡加見鄙驕閻筷綿衫亥燎捂孽謹侵娜牟你醋顴頭柑寬盟澈席雅風匙鼻全驗腥輩洪僻統(tǒng)疾訃結(jié)吏丫下黔族扔挪鱗渴庶謂房體儡病澎沽板揮咨仰廢丁腦吳祥擅垣絳鉛怔昌軌汲
【總結(jié)】第五節(jié)可降階的高階微分方程)()(xfyn?解法:??2)2(dCxyn??????xd??依次通過n次積分,可得含n個任意常數(shù)的通解.21CxC??型的微分方程一、例1.解:??12dcose
2025-04-21 03:56
【總結(jié)】第七章常微分方程初步第一節(jié)常微分方程引例1(曲線方程):已知曲線上任意一點M(x,y)處切線的斜率等于該點橫坐標4倍,且過(-1,3)點,求此曲線方程解:設(shè)曲線方程為,則曲線上任意一點M(x,y)處切線的斜率為根據(jù)題意有這是一個含有一階導數(shù)的模型引例2(運動方程):一質(zhì)量為m的物體,從高空自由下落,設(shè)此物體的運動只受重力的影響。試確定該物體速度隨時間的變化規(guī)律
2025-09-25 15:15
【總結(jié)】第九章微分方程一、教學目標及基本要求(1)了解微分方程及其解、通解、初始條件和特解的概念。(2)掌握變量可分離的方程和一階線性方程的解法,會解齊次方程。(3)會用降階法解下列方程:。(4)理解二階線性微分方程解的性質(zhì)以及解的結(jié)構(gòu)定理。(5)掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程。(6)會求自由項多項式、指數(shù)函數(shù)、
2025-06-24 15:07
【總結(jié)】一單項選擇題(每小題2分,共40分)1.下列四個微分方程中,為三階方程的有()個.(1)(2)(3)(4)A.1B.2C.3D.42.為確定一個一般的n階微分方程=0的一個特解,通常應(yīng)給出的初始條件是().A.當時,B.當時,C.當時,D.當時,3.微分方程的一個解是().
【總結(jié)】一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結(jié)思考題第一節(jié)微分方程的基本概念例1一曲線通過點(1,2),且在該曲線上任一點),(yxM處的切線斜率為x2,求這曲線的方程.解),(xyy?設(shè)所求曲線為d2dyxx?2dyxx??積分,得2,
2025-08-21 12:40
【總結(jié)】微分方程建模Ⅱ動態(tài)模型正規(guī)戰(zhàn)與游擊戰(zhàn)?早在第一次世界大戰(zhàn)期間就提出了幾個預測戰(zhàn)爭結(jié)局的數(shù)學模型,其中有描述傳統(tǒng)的正規(guī)戰(zhàn)爭的,也有考慮游擊戰(zhàn)爭的,以及雙方分別使用正規(guī)部隊和游擊部隊的所謂混合戰(zhàn)爭的。后來人們對這些模型作了改進用以分析歷史上一些著名的戰(zhàn)爭,如二戰(zhàn)中的硫磺島之戰(zhàn)和越南戰(zhàn)爭。預測戰(zhàn)爭勝負應(yīng)該考慮哪些因素?;
2025-08-16 00:58
【總結(jié)】其通解形式為非齊次形式:通解為:設(shè)特征方程??兩根為?。非齊次形式:參考資料:本人大學高數(shù)課件
2025-06-29 13:05
【總結(jié)】實驗四種群數(shù)量的狀態(tài)轉(zhuǎn)移——微分方程一、實驗?zāi)康募耙饬x[1]歸納和學習求解常微分方程(組)的基本原理和方法;[2]掌握解析、數(shù)值解法,并學會用圖形觀察解的形態(tài)和進行解的定性分析;[3]熟悉MATLAB軟件關(guān)于微分方程求解的各種命令;[4]通過范例學習建立微分方程方面的數(shù)學模型以及求解全過程;通過該實驗的學習,使學生掌握微分方程(組)求解方法(解析法
2025-06-26 18:22
【總結(jié)】修改稿冷連軋動態(tài)變規(guī)格張力微分方程TandemcoldrollingFGCtensiondifferentialequation摘要:介紹了冷連軋動態(tài)變規(guī)格概念及軋制工藝特點。以冷連軋機組機架間帶鋼受張力拉伸為
2025-06-23 03:06