【導讀】與兩定點F1,F(xiàn)2的距離的差的絕對等于常數(shù)。2a的點的軌跡,叫做雙曲線.與線段F1F2的中點重合,如圖。移項兩邊平方后整理得:,滿足什么條件時方程表示橢圓?兩點P1、P2的坐標分別為,(,5),練習1、如果方程表示雙曲線,求實數(shù)k的取值范圍.
【總結(jié)】2022/8/201課題:說課案說課人:段成勇單位:開遠一中課件制作:佘維平2022/8/202?一、教材分析1、本節(jié)教材的地位和作用由曲線方程研究曲線的幾何性質(zhì),并正確地畫出它的圖形,是解析幾何所研究的主要問題之一,本課就是根
2025-07-23 05:45
【總結(jié)】數(shù)學:3.3《雙曲線》課件PPT(北師大版選修2-1)第一課時?學習目標?情境設(shè)置?探索研究?反思應(yīng)用?歸納總結(jié)?作業(yè)學習目標?、標準方程及其求法;?、焦距、焦點位置與方程關(guān)系;?.情境設(shè)置?橢圓的定義?把平面內(nèi)與兩個定點
2024-11-23 00:46
【總結(jié)】一、回顧1、橢圓的第一定義是什么?2、橢圓的標準方程,焦點坐標是什么?定義圖象方程焦點關(guān)系y·oxF1F2··xyoF1F2··x2a2+y2b2=1
2025-08-16 01:11
【總結(jié)】第三節(jié)雙曲線:平面內(nèi)到兩個定點F1、F2的距離的______________________________的點的軌跡是雙曲線.這兩個定點叫做雙曲線的________,兩焦點的距離叫雙曲線的________,即若點P為雙曲線上任意一點,則有|PF1-PF2|=,________,若2a=F1F2,則P
2024-11-12 19:05
【總結(jié)】雙曲線的性質(zhì)(一)222bac??定義圖象方程焦點的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)12222??byax12
2024-11-18 08:47
【總結(jié)】2020年12月19日星期六xyoF1F2M(-c,0)(c,0)(x,y)xyoF1(0,c)F2(0,-c)M(x,y)22221(0)yxabab????22221(0)xyabab????M||MF1|-|MF2||=定
2024-11-12 01:38
【總結(jié)】雙曲線的幾何性質(zhì)濟源三中盧新民一、知識再現(xiàn)前面我們學習了橢圓的簡單的幾何性質(zhì):范圍、對稱性、頂點、離心率.我們來共同回顧一下橢圓
2024-11-18 10:03
【總結(jié)】雙曲線的簡單幾何性質(zhì)?直線與雙曲線的位置關(guān)系秭歸職教中心周志華、與弦的中點、三角形的周長、面積有關(guān)的問題.,提高分析問題和解決問題的能力.直線與雙曲線的位置關(guān)系及判斷(1)直線與雙曲線相交(2)直線與雙曲線相切(3)直線與雙曲線相離:
2025-07-18 14:57
【總結(jié)】白銀市第三中學張建平一、雙曲線小結(jié)雙曲線知識結(jié)構(gòu)圖標準方程幾何性質(zhì)定義共軛雙曲線等軸雙曲線漸近線定義標準方程第一定義:
2024-11-12 16:45
【總結(jié)】下頁上頁首頁小結(jié)結(jié)束下頁上頁首頁小結(jié)結(jié)束1.橢圓的定義和等于常數(shù)2a(2a|F1F2|)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的2.引入問題:差等于常數(shù)
【總結(jié)】第二講:雙曲線考綱要求:圓錐曲線①了解圓錐曲線的實際背景,了解圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用.②掌握橢圓、拋物線的定義、幾何圖形、標準方程及簡單性質(zhì).③了解雙曲線的定義、幾何圖形和標準方程,知道它的簡單幾何性質(zhì).④了解圓錐曲線的簡單應(yīng)用.⑤理解數(shù)形結(jié)合的
2024-11-10 23:01
【總結(jié)】雙曲線的簡單幾何性質(zhì)雙曲線的定義XY0F1F2M12222??byax12222??bxay)00(??ba,焦點在X軸上:焦點在Y軸上:點M到兩定點F1F2的距離之差的絕對值為常數(shù)(小于F1F2的距離)點p的軌跡方
2024-10-19 13:08
【總結(jié)】雙曲線簡單的幾何性質(zhì)(二)雙曲線的第二定義關(guān)于x軸、y軸、原點對稱圖形方程范圍對稱性頂點離心率1(0,0)xyabab????2222A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)100yx(a,b)ab??
2024-11-10 04:23
【總結(jié)】雙曲線及其標準方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復習雙曲
2025-05-06 18:03
【總結(jié)】雙曲線的簡單幾何性質(zhì)(2)關(guān)于x軸、y軸、原點對稱圖形方程范圍對稱性頂點離心率A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)關(guān)于x軸、y軸、原點對稱漸進線..yB2A1A2B1xOF2F1xB1y
2024-11-10 08:36