【總結(jié)】標(biāo)準(zhǔn)方程? 范圍?|x|≤a,|y|≤b對稱性?關(guān)于x軸、y軸成軸對稱;關(guān)于原點成中心對稱頂點坐標(biāo)?(a,0)、(-a,0)、(0,b)、(0,-b)焦點坐標(biāo)?(c,0)、(-c,0)半軸長?長半軸長為a,短半軸長為b.ab離心率?
2025-07-15 02:40
【總結(jié)】祝各位莘莘學(xué)子高考成功!高考數(shù)學(xué)考出好成績!橢圓與雙曲線性質(zhì)--(重要結(jié)論)清華附中高三數(shù)學(xué)備課組橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相離.4.以焦點半徑PF1為直徑的圓必與以長軸為直
2025-04-17 13:17
【總結(jié)】......橢圓知識點【知識點1】橢圓的概念:在平面內(nèi)到兩定點F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點的軌跡叫橢圓.這兩定點叫做橢圓的焦點,兩焦點間的距離叫做焦距.當(dāng)動點設(shè)為M時,橢圓即為點集
2025-06-20 08:24
【總結(jié)】橢圓與雙曲線的對偶性質(zhì)100條橢圓1.2.標(biāo)準(zhǔn)方程:3.4.點P處的切線PT平分△PF1F2在點P處的外角.5.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.6.以焦點弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相離.7.以焦點半徑PF1為直徑的圓必與以長軸為直徑的圓內(nèi)切.8.設(shè)A1、A2為橢圓的左、右
2025-08-04 17:12
【總結(jié)】......橢圓與雙曲線的必背的經(jīng)典結(jié)論橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端
2025-06-20 08:28
【總結(jié)】兩定點F1、F2(|F1F2|=2c)和的距離的等于常數(shù)2a(2a|F1F2|=2c0)的點的軌跡.平面內(nèi)與1.橢圓的定義2.雙曲線的定義平面內(nèi)與兩定點F1、F2(|F1F2|=2c)的距離的差的絕對值等于常數(shù)2a(2a|F1F2|=2c0)?的點軌跡
2024-11-24 16:52
【總結(jié)】橢圓的簡單幾何性質(zhì)(第三課時)直線與橢圓的弦長公式富源二中:何慧麗1.傾斜角、斜率:問題1:一、有關(guān)直線問題2121tanyykxx?????(5)一般式:(4)截距式:(3)兩點式:(1)點斜式:(2)斜截式:2.直線方程的五種形式.()yykx
2024-11-24 14:11
【總結(jié)】圓錐曲線:圓、橢圓、拋物線,雙曲線。拋物線及其標(biāo)準(zhǔn)方程二次函數(shù))0(2????acbxaxy的圖象(示意圖)?拋物線xyoxoy同學(xué)們生活學(xué)習(xí)中見過拋物線的實例有哪些?噴泉探照燈的燈面平面內(nèi)與一個定點F和一條定直線l(l不過點F)的距離相等的點
2024-10-17 18:08
【總結(jié)】圓錐曲線焦點弦公式及應(yīng)用湖北省陽新縣高級中學(xué) 鄒生書焦點弦是圓錐曲線的“動脈神經(jīng)”,集數(shù)學(xué)知識、思想方法和解題策略于一體,倍受命題人青睞,在近幾年的高考中頻頻亮相,題型多為小題且位置靠后屬客觀題中的壓軸題,也有作為大題進行考查的。定理1已知點是離心率為的圓錐曲線的焦點,過點的弦與的焦點所在的軸的夾角為,且。(1)當(dāng)焦點內(nèi)分弦時,有;(2)當(dāng)焦點外分弦時(此時曲線為雙曲線),有。
2025-07-25 00:15
【總結(jié)】橢圓典型例題一、已知橢圓焦點的位置,求橢圓的標(biāo)準(zhǔn)方程。例1:已知橢圓的焦點是F1(0,-1)、F2(0,1),P是橢圓上一點,并且PF1+PF2=2F1F2,求橢圓的標(biāo)準(zhǔn)方程。解:由PF1+PF2=2F1F2=2×2=4,得2a==1,所以b2=3.所以橢圓的標(biāo)準(zhǔn)方程是+=1.2.已知橢圓的兩個焦點為F1(-1,0),F(xiàn)2(1,0),且2a=10,求橢圓的標(biāo)準(zhǔn)方程
2025-03-25 04:50
【總結(jié)】第2講橢圓、雙曲線、拋物線、標(biāo)準(zhǔn)方程與幾何性質(zhì)名稱橢圓雙曲線拋物線定義|PF1|+|PF2|=2a(2a|F1F2|)|PF|=點F不
2025-05-01 02:17
【總結(jié)】圓錐曲線有關(guān)焦點弦的幾個公式及應(yīng)用如果圓錐曲線的一條弦所在的直線經(jīng)過焦點,則稱此弦為焦點弦。圓錐曲線的焦點弦問題涉及到離心率、直線斜率(或傾斜角)、定比分點(向量)、焦半徑和焦點弦長等有關(guān)知識。焦點弦是圓錐曲線的“動脈神經(jīng)”,集數(shù)學(xué)知識、思想方法和解題策略于一體,倍受命題人青睞,在近幾年的高考中頻頻亮相,題型多為小題且位置靠后屬客觀題中的壓軸題,也有作為大題進行考查的。本文介紹圓錐曲線有關(guān)焦
2025-07-25 12:41
【總結(jié)】雙曲線知識點一、雙曲線的定義:1.第一定義:到兩個定點F1與F2的距離之差的絕對值等于定長(<|F1F2|)的點的軌跡((為常數(shù)))這兩個定點叫雙曲線的焦點.要注意兩點:(1)距離之差的絕對值.(2)2a<|F1F2|.當(dāng)|MF1|-
2025-07-25 00:12
【總結(jié)】橢圓與雙曲線的對偶性質(zhì)--(會推導(dǎo)的經(jīng)典結(jié)論)高三數(shù)學(xué)備課組雙曲線1.雙曲線(a>0,b>0)的兩個頂點為,,與y軸平行的直線交雙曲線于P1、P2時A1P1與A2P2交點的軌跡方程是.2.過雙曲線(a>0,b>o)上任一點任意作兩條傾斜角互補的直線交雙曲線于B,C兩點,則直線BC有定向且(常數(shù)).3.若P為雙曲線(a>0,b>0)右(或左)支上除頂點外的任一點,F1,
2025-08-17 04:20
【總結(jié)】橢圓與雙曲線定義的應(yīng)用2.雙曲線的定義:平面內(nèi)與兩個定點12,FF的距離的差的絕對值等于常數(shù)(小于12FF)的點的軌跡叫做雙曲線.1.橢圓的定義:平面內(nèi)到兩個定點12,FF的距離的和等于常數(shù)(大于12FF)的點的軌跡叫橢圓.思考一:(課本54PB組第2題)
2024-11-09 00:53