【總結】三角函數(shù)與平面向量(一)三角函數(shù):三角函數(shù)有16個考點(1).(2)掌握任意角的正弦,余弦,正切的定義,了解余切,正割,余割的定義,了解周期函數(shù)與最小正周期的意義.(3)掌握同角三角函數(shù)的基本關系式,掌握正弦、余弦的誘導公式,掌握兩角和與差的正弦、余弦
2024-08-13 13:03
【總結】第二講(文) 三角函數(shù)與平面向量第一節(jié)三角函數(shù)的化簡、求值及證明三角函數(shù)的化簡、求值及證明涉及恒等變換,而三角函數(shù)的恒等變換是歷年高考命題的熱點.它既可以出現(xiàn)小題(選擇或者填空),也可以與三角函數(shù)的性質,解三角形,向量等知識結合,參雜、滲透在解答題中
2024-08-13 08:43
【總結】我的宗旨:授人以漁QQ1294383109歡迎互相交流訪問我的空間第二講(文)三角函數(shù)與平面向量第一節(jié)三角函數(shù)的化簡、求值及證明三角函數(shù)的化簡、求值及證明涉及恒等變換,而三角函數(shù)的恒等變換是歷年高考命題的熱
2024-08-23 05:15
2024-08-14 18:39
【總結】 三角函數(shù)與平面向量的綜合應用1.三角恒等變換(1)公式:同角三角函數(shù)基本關系式、誘導公式、和差公式.(2)公式應用:注意公式的正用、逆用、變形使用的技巧,觀察三角函數(shù)式中角之間的聯(lián)系,式子之間以及式子和公式間的聯(lián)系.(3)注意公式應用的條件、三角函數(shù)的符號、角的范圍.2.三角函數(shù)的性質(1)研究三角函數(shù)的性質,一般要化為y=Asin(ωx+φ)的形式,其特征
2025-07-26 02:33
【總結】平面向量與三角函數(shù)高考題選講教學任務:1.復習三角函數(shù)有關公式;2.復習三角函數(shù)有關知識點;3.作業(yè)題講評.教學重點:向量與三角函數(shù)整合問題歸類復習.1.已知向量(Ⅰ)若,求的值;(Ⅱ)若求的值。
2024-08-13 16:10
【總結】湖南省桃江四中高二數(shù)學《三角函數(shù)、平面向量、解三角形》練習題1時間:120分鐘滿分:150分姓名班級學號一、選擇題(每小題5分,共50分)()A. B. C. D.:,,,則與的夾角是() A. B. C. D.,且,則
2025-01-14 11:49
【總結】三角函數(shù)與平面向量綜合題的九種類型題型一:三角函數(shù)與平面向量平行(共線)的綜合【例1】 已知A、B、C為三個銳角,且A+B+C==(2-2sinA,cosA+sinA)與向量=(sinA-cosA,1+sinA)是共線向量.(Ⅰ)求角A;(Ⅱ)求函數(shù)y=2sin2B+cos的最大值.題型二. 三角函數(shù)與平面向量垂直的綜合【例2】已知向量=(3sinα,cos
2025-03-24 05:42
【總結】第四章三角函數(shù)基本知識一、基本概念、定義:1.角的概念推廣后,包括、、,與α終邊相同的角表示為。終邊角:x軸上y軸上第一象
2024-10-19 11:34
【總結】專題一三角函數(shù)與平面向量高考中,三角函數(shù)主要考查學生的運算能力、靈活運用能力,在客觀題中,突出考察基本公式所涉及的運算、三角函數(shù)的圖像基本性質,尤其是對角的范圍及角之間的特殊聯(lián)系較為注重。解答題中以中等難度題為主,涉及解三角形、向量及簡單運算。三角函數(shù)部分,公式較多,易混淆,在運用過程中,要觀察三角函數(shù)中函數(shù)名稱的差異、角的差異、關系式的差異,確定三角函數(shù)變形化簡方向。平面
2024-08-13 16:02
【總結】04年2.已知點1(6,2)M和2(1,7)M,直線7ymx??與線段12MM的交點M分有向線段12MM的比為3:2,則m的值為()A.23?B.32?C.41D.47.已知,,abc為非零的平面向量.甲:abac???,乙:bc?,則()
2024-08-24 11:50
【總結】相信自己,你行的!授課教案教學標題三角函數(shù)的應用及平面向量的基礎知識教學目標1、三角函數(shù)綜合應用2、平面向量基礎知識教學重難點重點:三角函數(shù)應用中公式的熟練掌握;平面向量基礎知識點難點:三角函數(shù)運用中誘導公式的合理采用及轉換;平面向量的幾何意義上次作業(yè)檢查授課內(nèi)容:一、復習要點1三角函數(shù)的圖像及性質三種基本三角函數(shù)的圖像及性質(定
2025-07-21 13:06
【總結】三角函數(shù) 向量 復數(shù)齊民友(武漢大學數(shù)學與統(tǒng)計學院 430072)1 三角函數(shù)新課標中有關三角函數(shù)的內(nèi)容分在數(shù)學4(兩個項目:三角函數(shù),三角恒等變換)和數(shù)學5(解三角形)中,共給了32個學時.其起點是初中已學過的銳角三角函數(shù),講法上強調(diào)了利用向量方法,發(fā)揮單位圓的作用,而且強調(diào)要淡化三角恒等變換的技巧性內(nèi)容.這些都是很好的,但我以為如果突出三角函數(shù)的最本質
2025-05-16 01:03
【總結】LTMI專用理科學案【數(shù)學】___弧度、三角函數(shù)、平面向量__學案【概念】1、弧度:表示角的大小。定義為圓心角所對的弧長與半徑的比值。2、三角函數(shù):單位圓上圓心角所對的點的坐標。3、向量:包含大小和方向的量?!緫谩?、以后除特別指明,所有角都用弧度表示。2、以后除平面幾何證明(選修4-2),否則解題
2025-07-26 10:25
【總結】專題二三角函數(shù)、解三角形、平面向量一、三角函數(shù)1.任意角的概念(1)角分正角、負角、零角。逆時針旋轉是角增大的方向。(2)終邊相同的角:①若角與角終邊相同,則(或可寫成。其中)。②對于任意角,總可以在唯一找到一個角與其終邊相同。③根據(jù)上述結論,可以利用角所在的象限判斷任意角所在的象限。④終邊相同的角表示形式不是唯一的。(3)終邊共線的角:
2025-06-07 13:52