【總結】導數(shù)與函數(shù)的單調性(4).對數(shù)函數(shù)的導數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(5).指數(shù)函數(shù)的導數(shù):.)()1(xxee??).1,0(ln)()2(????aaaaaxxxxcos)(sin1??)((3)
2024-11-11 08:49
【總結】教材分析本節(jié)的教學內容屬導數(shù)的應用,是在學生學習了導數(shù)的概念、幾何意義、計算的基礎上學習的內容,學好它既可加深對導數(shù)的理解,,應使學生體驗到,用導數(shù)判斷單調性要比用
2025-06-08 00:17
【總結】:在某個區(qū)間(a,b)內,如果,那么函數(shù)在這個區(qū)間內單調遞增;如果,,那么函數(shù)在這個區(qū)間上是常數(shù)函數(shù).注:函數(shù)在(a,b)內單調遞增,則,是在(a,b)內單調遞增的充分不必要條件.:曲線在極值點處切線的斜率為0,并且,曲線在極大值點左側切線的斜率為正,右側為負;曲線在極小值點左側切線的斜率為負,右側為正.一般地,當函數(shù)在點處連續(xù)時,判斷是極大(?。┲档姆椒ㄊ牵海?)如果在附
2025-06-19 04:25
【總結】第一篇:函數(shù)單調性與導數(shù)教案 【三維目標】 知識與技能: 過程與方法:,掌握用導數(shù)研究單調性的方法 、分析、概括的能力滲透數(shù)形結合思想、轉化思想。 情感態(tài)度與價值觀:通過在教學過程中...
2024-10-30 22:00
【總結】1.設函數(shù)。(1)當a=1時,求的單調區(qū)間。(2)若在上的最大值為,求a的值。解:對函數(shù)求導得:,定義域為(0,2)當a=1時,令當為增區(qū)間;當為減函數(shù)。當有最大值,則必不為減函數(shù),且0,為單調遞增區(qū)間。最大值在右端點取到。。2.已知函數(shù)其中實數(shù)。(I)若a=2,求曲線在點處的切線方程;(II)若在x=1處取得極值,試討論的單調
2025-03-24 07:03
【總結】課題:導數(shù)與函數(shù)的單調性、極值、最值科目:數(shù)學教學對象:高三課時第1課時提供者:段秀香單位:靜海第六中學一、教學內容分析 現(xiàn)在中學數(shù)學新教材中,導數(shù)(選修2-2)處于一種特殊的地位,是高中數(shù)學知識的一個重要交匯點,是聯(lián)系多個章節(jié)內容以及解決相關問題的重要工具。天津高考中必有考一道解答題(如2009-2011年常規(guī)題或2012-2014年壓軸題)和一道選擇
2025-04-17 00:39
【總結】教學目標?:掌握用導數(shù)的符號判別函數(shù)增減性的方法,提高對導數(shù)與微分的學習意義的認識.?:訓練解題方法,培養(yǎng)解題能力。?:能用普遍聯(lián)系的觀點看待事物,抓住引起事物變化的主要因素。?:數(shù)學方法的廣泛應用之美,數(shù)學內容的統(tǒng)一性。重點:利用導數(shù)的符號確定函數(shù)的單調區(qū)間。難點:利用導數(shù)的符號確定函數(shù)的單調區(qū)間.單調性的概念
2024-11-06 23:03
【總結】1北京市中小學“京教杯”青年教師教學設計大賽教學設計參與人員姓名單位聯(lián)系方式設計者彭青松北京醫(yī)學院附屬中學13717900631實施者彭青松北京醫(yī)學院附屬中學13717900631指導者李寧北京大學附屬中學13601082518張思明北京大學附屬中學010
2024-11-29 10:10
【總結】1高二數(shù)學課堂任務單課題:任務一:分析函數(shù)()3lnCttt???的單調性任務二:分析豎直上拋小沙袋過程中,位移X是時間t的函數(shù),設X=X(t),(1).畫出位移
2024-11-23 15:13
【總結】復習1、某點處導數(shù)的定義——這一點處的導數(shù)即為這一點處切線的斜率2、某點處導數(shù)的幾何意義——3、導函數(shù)的定義——4、由定義求導數(shù)的步驟(三步法)5、求導的公式與法則——如果函數(shù)f(x)、g(x)有導數(shù),那么6、求導的方法——
【總結】導數(shù)應用:含參函數(shù)的單調性討論(二)對函數(shù)(可求導函數(shù))的單調性討論可歸結為對相應導函數(shù)在何處正何處負的討論,若有多個討論點時,要注意討論層次與順序,一般先根據(jù)參數(shù)對導函數(shù)類型進行分類,從簡單到復雜。1、典型例題例1、已知函數(shù),討論函數(shù)的單調性.分析:討論單調性就是確定函數(shù)在何區(qū)間上單調遞增,在何區(qū)間單調遞減。而確定函數(shù)的增區(qū)間就是確定的解區(qū)間;確定函數(shù)的減區(qū)間就是確定的解
2025-06-20 12:25
【總結】 導數(shù)在研究函數(shù)中的應用 函數(shù)的單調性與導數(shù)學習目標:.(易混點).(重點).(重點、難點)[自主預習·探新知]1.函數(shù)的單調性與其導數(shù)正負的關系定義在區(qū)間(a,b)內的函數(shù)y=f(x):f′(x)的正負f(x)的單調性f′(x)>0單調遞增f′(x)<0單調遞減思考:如果在某個區(qū)間內恒有f′(x)=0,那么函數(shù)f(x)有什么特
2025-06-25 05:13
【總結】導數(shù)在函數(shù)的單調性、極值中的應用一、知識梳理1.函數(shù)的單調性與導數(shù)在區(qū)間(a,b)內,函數(shù)的單調性與其導數(shù)的正負有如下關系:如果f_′(x)0,那么函數(shù) y=f(x)在這個區(qū)間內單調遞增;如果f_′(x)0,那么函數(shù) y=f(x)在這個區(qū)間內單調遞減;如果f_′(x)=0,那么 f(x)在這個區(qū)間內為常數(shù).問題探究1:若函數(shù) f(x)在(a,b)內
2025-08-04 07:33
【總結】函數(shù)單調性與導數(shù)練習題高二一部數(shù)學組劉蘇文2017年4月15日一、選擇題′(x0)=0時,則f(x0)為f(x)的極大值′(x0)=0時,則f(x0)為f(x)的極小值′(x0)=0時,則f(x0)為f(x)的極值(x0)為函數(shù)f(x)的極值且f′(x0)存在時,則有f′(x0)=0,在x=0處取得極值的函數(shù)是①y=x3②y=x2+1③
2025-06-18 22:00
【總結】,能利用導數(shù)研究函數(shù)的單調性,會求函數(shù)的單調區(qū)間(對多項式函數(shù)求導一般不超過三次).;會用導數(shù)求函數(shù)的極大值、極小值(對多項式函數(shù)求導一般不超過三次);會求閉區(qū)間上函數(shù)的最大值、最小值(對多項式函數(shù)求導一般不超過三次)..在區(qū)間(a,b)內,函數(shù)的單調性與其導數(shù)的正負有
2025-08-23 15:21