【總結(jié)】定積分的概念abxyo??A原型(求曲邊梯形的面積)一、抽象定積分概念現(xiàn)實(shí)原型)(xfy?曲邊梯形由連續(xù)曲線軸與兩直線,所圍成.()(()0),yfxfxxxaxb????考察下列圖形由哪些曲邊圍成.A20
2025-01-14 14:52
【總結(jié)】引言從歷史上說,定積分的概念產(chǎn)生于計(jì)算平面上封閉曲線圍成區(qū)域的面積.為了計(jì)算計(jì)算這類區(qū)域的面積,最后把問題歸結(jié)為計(jì)算具有特定結(jié)構(gòu)的和式的極限.人們在實(shí)踐中逐漸認(rèn)識到這種特定結(jié)構(gòu)的和式的極限,不僅是計(jì)算區(qū)域面積的數(shù)學(xué)工具,而且也是計(jì)算其它許多實(shí)際問題(如變力作功、水的壓力、立體體積等)的數(shù)學(xué)工具.因此,無論在理
2025-05-12 08:06
【總結(jié)】(AdvancedMathematics)?CSMyzx0?P定積分的應(yīng)用習(xí)題課(三)第三章一元函數(shù)積分學(xué)及應(yīng)用l平面圖形的面積l體積l弧長定積分的應(yīng)用一復(fù)習(xí)定積分的應(yīng)用定積分的應(yīng)用1、定積分應(yīng)用的常用公式(1)平面圖形的面積直角坐標(biāo)情形返回定積分的應(yīng)用若
2025-04-29 00:14
【總結(jié)】一、變速直線運(yùn)動中位置函數(shù)與速度函數(shù)之間的聯(lián)系第二節(jié)第二節(jié)微積分基本定理微積分基本定理積分的基本原理:微積分基本定理,由艾薩克·牛頓和戈特弗里德·威廉·萊布尼茨在十七世紀(jì)分別獨(dú)自確立。微積分基本定理將微分和積分聯(lián)系在一起,這樣,通過找出一個(gè)函數(shù)的原函數(shù),就可以方便地計(jì)算它在一個(gè)區(qū)間上的積分。積分和導(dǎo)數(shù)已
2025-04-29 00:05
【總結(jié)】知識精要基礎(chǔ)訓(xùn)練典例示范誤區(qū)警示方法歸納考點(diǎn)測評例題備選§定積分題型一題型二題型三題型一題型二題型三題型一題型二題型三題型一題型二題型三題型一題型二題型三題型一題
2024-12-08 04:04
【總結(jié)】abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11
【總結(jié)】主要內(nèi)容典型例題第六章定積分及其應(yīng)用習(xí)題課(一)問題1:曲邊梯形的面積問題2:變速直線運(yùn)動的路程存在定理廣義積分定積分定積分的性質(zhì)定積分的計(jì)算法牛頓-萊布尼茨公式()d()()bafxxFbFa??
2025-08-21 12:42
【總結(jié)】在幾何中的應(yīng)用1、定積分的幾何意義:Oxyaby?f(x)x=a、x=b與x軸所圍成的曲邊梯形的面積。xyOaby?f(x)當(dāng)f(x)?0時(shí),由y?f(x)、x?a、x?b與x軸所圍成的曲邊梯形位于x軸的下方,一、復(fù)習(xí)引入鞏固練習(xí)利用定積分的幾何意義
2025-04-29 01:46
【總結(jié)】導(dǎo)數(shù)與定積分總結(jié)知識點(diǎn)總結(jié):(一)對導(dǎo)數(shù)定義的理解;A:平均變化率瞬時(shí)變化率B:割線斜率切線斜率C:其實(shí)質(zhì)是從點(diǎn)x附近的平均變化率到點(diǎn)x的瞬時(shí)變化率;還要注意函數(shù)值的變化要與自變量的變化一致(1)設(shè)f(x)為可導(dǎo)函數(shù),則的為
2025-04-29 00:12
【總結(jié)】第四節(jié)定積分與微積分基本定理(理)重點(diǎn)難點(diǎn)重點(diǎn):了解定積分的概念,能用定義法求簡單的定積分,用微積分基本定理求簡單的定積分.難點(diǎn):用定義求定積分知識歸納1.定積分的定義如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),用分點(diǎn)a=x0x1&l
2024-12-07 18:51
【總結(jié)】這一部分里,我們將看到以下內(nèi)容?幾個(gè)典型物理問題及其數(shù)學(xué)描述(微分方程和定解條件)?微分方程的類型?微分方程的邊界條件?微分方程及其邊界條件的等效積分原理幾個(gè)典型的問題?弦振動問題的微分方程及定解條件?傳熱問題的微分方程及定解條件?位勢方程及定解條件弦是一種抽象模型,工程實(shí)際中,可以模擬繩鎖、
2025-05-15 04:17
【總結(jié)】實(shí)驗(yàn)二定積分的近似計(jì)算數(shù)學(xué)實(shí)驗(yàn)1l定積分計(jì)算的基本公式是牛頓-萊布尼茲公式。但當(dāng)被積函數(shù)的原函數(shù)不知道時(shí),如何計(jì)算?這時(shí)就需要利用近似計(jì)算。特別是在許多實(shí)際應(yīng)用中,被積函數(shù)甚至沒有解析表達(dá)式,而是一條實(shí)驗(yàn)記錄曲線,或一組離散的采樣值,此時(shí)只能用近似方法計(jì)算定積分。l本實(shí)驗(yàn)主要研究定積分的三種近似計(jì)算算法:矩形法、梯形法和拋物線法。同時(shí)介紹
【總結(jié)】對定積分的補(bǔ)充規(guī)定:(1)當(dāng)ba?時(shí),0)(??badxxf;(2)當(dāng)ba?時(shí),????abbadxxfdxxf)()(.說明在下面的性質(zhì)中,假定定積分都存在,且不考慮積分上下限的大小.一、基本內(nèi)容證??badxxgxf)]()([iiinixgf???
2025-01-14 14:49
【總結(jié)】1第六章定積分及其應(yīng)用§§§§§§()?bafxdx??2第六章定積分及其應(yīng)用?前一章討論了已知一個(gè)函數(shù)的導(dǎo)數(shù),如何求原來的函數(shù),這樣一個(gè)積分學(xué)的基本問題——不定積分.
2025-08-01 13:20
【總結(jié)】1第四節(jié)定積分的換元積分法和分部積分法一、定積分的換元積分法定理則有2證3注意:(1)應(yīng)用定積分的換元法時(shí),與不定積分比較,多一事:換上下限;少一事:不必回代;(2)(3)逆用上述公式,即為“湊微分法”,不必?fù)Q限.4例1例2例35例4計(jì)算解原式6例5計(jì)算
2025-04-28 23:57