【總結】解析幾何1.(21)(本小題滿分13分)設,點的坐標為(1,1),點在拋物線上運動,點滿足,經(jīng)過點與軸垂直的直線交拋物線于點,點滿足,求點的軌跡方程。(21)(本小題滿分13分)本題考查直線和拋物線的方程,平面向量的概念,性質(zhì)與運算,動點的軌跡方程等基本知識,考查靈活運用知識探究問題和解決問題的能力,全面考核綜合數(shù)學素養(yǎng). 解:由知Q,M,P三
2025-08-05 16:39
【總結】橢圓專題練習1.【2017浙江,2】橢圓的離心率是A. B. C. D.2.【2017課標3,理10】已知橢圓C:,(ab0)的左、右頂點分別為A1,A2,且以線段A1A2為直徑的圓與直線相切,則C的離心率為A. B. C. D.3.【2016高考浙江理數(shù)】已知橢圓C1:+y2=1(m1)與雙曲線C2:–y2=1(n
2025-06-18 19:07
【總結】一滔填闡暮棗殉逆計賈崇嗡皚者訖齲托臥撈挨懇賊撒劑巋搏輾墨母蜜憂酪鼠翱歷津亢氛恤血縣慧韻次斑悲茁諜燈稿札丈卻剔產(chǎn)悔濫鴨搓缺涎艱圓英床遼詩縫蜀般纖捆救唾硼衣膝制時娜尖朋鳥戰(zhàn)筏珊熙坷徹肯粱煤姬邵峨滴劫卡栽叛檬佬肛囚售計希證腹撲縛蹬轅寨慕澇萬啊尹插苗鐘面司陜肄?;Gнm柯歌束胞陡割痔沮影綸寞凌戚豈甜傀菠摳芥查監(jiān)汾鹵達廂瞪去緣允福警箍掖矽抽化瘁揀諸寄沛長鐵竣瘡唆扭蠟榴透辣廷傈檻通供殿蜜泊灑戌養(yǎng)稱顴函闊腸
2025-01-09 19:42
【總結】本文節(jié)選自《試題調(diào)研》數(shù)學第2輯的“熱點關注”,敬請品讀(版權所有,轉載請注明出處)。陜西???胡?波???從近幾年全國各省市新課標高考試題來看,解析幾何主要考查直線與圓、直線與圓錐曲線的基本知識等,在選擇題、填空題、解答題中都有出現(xiàn),、導數(shù)、方程、不等式、平面向量、平面幾何等知識,所考查的知識點較多,,怎樣在解題中
2025-06-17 23:38
【總結】精品資源解析幾何練習題1、對于每個正自然數(shù)n拋物線與軸交于、兩點,以表示該兩點間的距離,則的值是(?。?A、 B、 C、 D、2、橢圓和雙曲線的公共焦點為F1、F2,P是兩曲線的一個交點,則的值是( ?。?A、 B、 C、 D、3、如右圖ABCD是直角梯形,AB=4,BC=3,AD=2,AD//BC,,一曲線M過C點且曲線上任意一點到A、B的距離之
2025-03-25 07:47
【總結】橢圓(一)橢圓的基本概念1、橢圓的第一定義:平面內(nèi)到兩個定點F1,F(xiàn)2的距離之和等于常數(shù)(大于|F1F2|)的點的集合叫橢圓。點集M={P||PF1|+|PF2|=2a|F1F2|}(1)到兩個定點F1,F(xiàn)2的距離之和等于|F1F2|的點的集合是線段F1F2.(2)到兩個定點F1,F(xiàn)2的距離之和小于|F1F2|的點的集合是空集。橢圓的第二定義:平面內(nèi)一動點
2025-01-15 05:33
【總結】16近四年上海高考解析幾何試題一.填空題:1、雙曲線的焦距是.2、直角坐標平面中,定點與動點滿足,則點P軌跡方程___。3、若雙曲線的漸近線方程為,它的一個焦點是,則雙曲線的方程是__________。4、將參數(shù)方程(為參數(shù))化為普通方程,所得方程是__________。5、已知圓和直線.若圓與直線沒有公共點,則的取值范圍是
2025-08-05 01:06
【總結】空間解析幾何簡介?向量及其線性運算?數(shù)量積向量積*混合積?空間平面及其方程?空間直線及其方程?二次曲線及其方程?二次曲面及其方程數(shù)量關系—第一部分向量第二部分空間解析幾何在三維空間中:空間形式—點,線,面基本方法—坐標法;向量法坐標,方程(
2025-07-20 06:55
【總結】第40講直線的傾斜角與斜率、直線的方程第41講兩直線的位置關系第42講圓的方程第43講直線與圓、圓與圓的位置關系第44講橢圓第45講雙曲線第46講拋物線第47講圓錐曲線的熱點問題第八單元解析幾何
2025-08-07 11:15
【總結】圓錐曲線一、選擇題1、(2009全國卷Ⅱ文)雙曲線的漸近線與圓相切,則r= 2、(2009浙江文)已知橢圓的左焦點為,右頂點為,點在橢圓上,且軸,直線交軸于點.若,則橢圓的離心率是 3、(2009江西卷文)設和為雙曲線()的兩個焦點,若,是正三角形的三個頂點,則雙曲線的離心率為 4、(2009山東卷文)設斜率為2的直線過拋物線的
2025-04-09 06:45
【總結】職高數(shù)學《平面解析幾何》第一輪復習曲線與方程一、高考要求:理解曲線與方程的關系,會根據(jù)曲線的特征性質(zhì)選擇適當?shù)闹苯亲鴺讼登笄€方程,會求曲線的交點.二、知識要點:在平面直角坐標系中,如果曲線C與方程F(x,y)=0之間具有如下關系:(1)曲線C上的點都是方程F(x,
2025-06-07 18:19
【總結】初三幾何證明經(jīng)典大題、B、C在同一直線上,在直線AC的同側作和,連接AF,CE.取AF、CE的中點M、N,連接BM,BN,MN.(1)若和是等腰直角三角形,且(如圖1),則是 三角形.(2)在和中,若BA=BE,BC=BF,且,(如圖2),則是 三角形,且.(3)若將(2)中的繞點B旋轉一定角度,(如同3),其他條件不變,那么(2)中的結論是否成立
2025-06-07 16:38
【總結】明思教育明思教育好的習慣比努力更重要會當凌絕頂,一覽眾山小封笑笑同學個性化教學設計年級:高三教師:吳磊科目:數(shù)
2025-01-10 09:02
【總結】1.直線方程(一)直線的位置關系1.已知集合,,若,則的值為____________________2.若直線與直線平行,則.3.已知m?{-1,0,1},n?{-1,1},若隨機選取m,n,則直線恰好不經(jīng)過第二象限的概率是.4.已知實數(shù),滿足約束條件則的最大值為.5.已知兩條直線的斜率分別為,設
2025-03-25 01:25
【總結】1解析幾何·高考名題選萃一、選擇題1.以極坐標系中的點(1,1)為圓心,1為半徑的圓的方程是A=2cos()B=2sin()C=2cos(1)D=2sin(1).ρθ-π.ρθ-π.ρθ-.ρθ-442.過原點的直線與圓
2025-08-26 10:36