【總結】浙江省玉環(huán)縣楚門中學呂聯(lián)華新課引入:在正方體A1B1C1D1-ABCD中,說出下列各對線段的位置關系ABCDA1B1C1D1(1)AB和C1D1;(2)A1C1和AC;(3)A1C和D1B:(4)AB和CC1;(5)BD1和A1C1;
2025-08-16 01:02
【總結】課題:異面直線所成的角教材:中等職業(yè)教育課程改革國家規(guī)劃新教材《數學》(基礎模塊)下冊(修訂本)(語文出版社)一、教材分析“異面直線所成的角”是中等職業(yè)教育課程改革國家規(guī)劃新教材,語文出版社《數學》(基礎模塊)下冊(修訂本)第九單元第二節(jié)第2部分,“直線與直線所成的角”,主要的內容是認識異面直線以及掌握異面直線夾角的定義和求解方法.(1),、培養(yǎng)學生
2025-04-17 01:12
【總結】異面直線及所成的角一、基礎知識2、空間兩條直線的位置關系:異面直線相交直線平行直線共面直線1、異面直線的定義:不同在任何一個平面內的兩條直線叫作異面直線空間兩條直線連結平面內一點與平面外一點的直線,和這個平面內不經過此點的直線是異面直線3、異面直線的畫法:平面襯托法
2025-07-26 10:31
【總結】異面直線的判斷與所成的角 一.選擇題(共10小題)1.異面直線是指( ?。〢.空間中兩條不相交的直線B.平面內的一條直線與平面外的一條直線C.分別位于兩個不同平面內的兩條直線D.不同在任何一個平面內的兩條直線2.已知:空間四邊形ABCD如圖所示,E、F分別是AB、AD的中點,G、H分別是BC,CD上的點,且.,則直線FH與直線EG( ?。〢.平行 B.
2025-08-05 05:37
【總結】構造異面直線所成角的幾種方法異面直線所成角的大小,是由空間任意一點分別引它們的平行線所成的銳角(或直角)來定義的.準確選定角的頂點,平移直線構造三角形是解題的重要環(huán)節(jié).本文舉例歸納幾種方法如下,供參考.一、抓異面直線上的已知點過一條異面直線上的已知點,引另一條直線的平行線(或作一直線并證明與另一直線平行),往往可以作為構造異面直線所成角的試探目標.例1(2005年全國高考福建
2025-03-25 06:43
【總結】復習:1、異面直線的畫法αabαβbaαab(平面襯托法)復習:2、異面直線所成角的定義a,b是兩條異面直線,經過空間任意一點o,分別引直線a1∥a,b1∥b,我們把直線a1和b1所成的銳角(或直角)叫做異面直線a和b所成的角。圖像演示(1
2025-08-05 06:47
【總結】空間中直線與直線之間的位置關系習題課問題一:異面直線的判定例m、n為異面直線,m?平面α,n?平面β,α∩β=l,則l()?A.與m、n都相交?B.與m、n中至少一條相交?C.與m、n都不相交?D.與m、n中的一條直線相交?例P、Q、R、S分別是
2025-08-05 06:48
【總結】空間中是否存在不可能共面的兩條直線?:不同在任何一個平面內的兩條直線叫做異面直線.注:概念應理解為:“經過這兩條直線無法作出一個平面”.或:“不可能找到一個平面同時經過這兩條直線”.不能理解為:“分別在兩個平面內的兩直線為異面直線”.演示空間的兩條直線有三種位置關系:
2024-11-09 01:18
【總結】2020年12月16日星期三:(1)根據異面直線的定義;應用反證法來證明。(2)連接平面內一點與平面外一點的直線,和這個平面不經過此點的直線是異面直線。:αabαabab一、復習引入:畫異面直線時,常以輔助平面作襯托,以加強直觀性。(1)“a,b是異面直線”是指
2024-11-09 08:09
【總結】直線和圓的方程知識關系直線的方程一、直線的傾斜角和斜率:一條直線向上的方向與軸正方向所成的最小正角叫做這條直線的傾斜角,其中直線與軸平行或重合時,其傾斜角為,故直線傾斜角的范圍是.:傾斜角不是的直線其傾斜角的正切叫這條直線的斜率,即.注:①每一條直線都有傾斜角,但不一定有斜率.②當時,直線垂直于軸,它的斜率k不存在.③過兩點、的直線
2025-06-19 03:55
【總結】第三章直線與方程【典型例題】題型一求直線的傾斜角與斜率設直線斜率為且則傾斜角的取值范圍拓展一三點共線問題例已知三點A(a,2)、B(3,7)、C(-2,-9a)在一條直線上,求實數a的值.例已知三點)在一條直線上,則拓展二與參數有關問題例已知兩點A(-2,-3),
2025-04-04 04:28
【總結】第三章直線與方程知識點及典型例題1.直線的傾斜角定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°2.直線的斜率①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即k=tana。斜率反映直線
2025-06-19 05:08
【總結】一.定義:直線a、b是異面直線,經過空間任意一點O,分別引直線a′∥a,b′∥b。我們把直線a′和b′所成的銳角(或直角)叫做異面直線a和b所成的角.說明:1.a和b所成的角的大小與空間點的選取無關.2.實質:把a和b平行移動使之相交,把抽象的空
2025-08-05 18:29
【總結】問題提出?三線平行公理和等角定理分別說明什么問題?關系,用什么幾何量反映異面直線之間的相對位置關系,是我們需要探討的問題.知識探究(一):異面直線所成的角思考1:兩條相交直線、平行直線的相對位置關系,分別是通過什么幾何量來反映的?思考2:兩條異面直線之間有一個相對傾斜度,若將兩異面直線分別平行移動,
2024-11-11 21:09
【總結】第三章直線與方程直線的傾斜角與斜率.1傾斜角與斜率【知識點歸納】:::【典型例題】題型一求直線的傾斜角例1已知直線的斜率的絕對值等于,則直線的傾斜角為().A.60°B.30°C.60°或120°D.30°或150°