【總結】平面向量練習題一一、選擇題.若兩個非零向量,滿足,則向量與的夾角為 ( ?。〢. B. C. D.【答案】B由得,,,得,即,所以,所以,所以向量與的夾角的余弦值為,所以,選 B..已知向量 ( ?。〢.—3 B.—2 C.l D.-l【答案】A【解析】因為垂直,所以有,即,所以,解得,選A..已知O是所在平面內一點,D為BC邊中點,且,則有
2025-06-23 18:41
【總結】......平面向量經(jīng)典習題匯總1.()已知向量a、b不共線,cabR),dab,如果cd,那么()A.且c與d同向B.且c與d反向C.且c與
2025-03-25 01:23
【總結】平面向量基礎練習題1.下列向量中,與向量不共線的一個向量()A.B.C.D.2.已知正六邊形,在下列表達式①;②;③;④中,與等價的有()A.個B.個C.個D.個3.如圖,正方形ABCD中,點E是DC的中點,CF:FB=2:1,那么=( ).A.-B.+C.+
2025-03-25 02:04
【總結】1(3)數(shù)學練習題精選平面向量平面向量基本概念1.如果a,b是兩個單位向量,則下列結論中正確的是()(A)a?b(B)1?ab=(C)22?ab(D)?ab2.已知向量1(3,2),(5,1),2OMONMN???
2025-01-09 16:36
【總結】平面向量定義及線性運算練習題一.選擇題1、下列說法正確的是(?。〢、數(shù)量可以比較大小,向量也可以比較大小.B、方向不同的向量不能比較大小,但同向的可以比較大小.C、、向量的模可以比較大小.2、給出下列六個命題:①兩個向量相等,則它們的起點相同,終點相同;②若,則;③若,則四邊形ABCD是平行四邊形;④平行四邊形ABCD中,一定有;⑤若,,則;⑥,,則.
2025-03-25 01:22
【總結】平面向量一、選擇題1、已知向量( )A. B. C. D.2、已知向量則的坐標是( )A. B. C. D.3、已知且∥,則x等于( )A.3 B. C. D.4、若則與的夾角的余弦值為( )A. B. C. D.5、若,與的夾角是,則等于( )A.12 B. C. D.
2025-06-19 22:03
【總結】平面向量:1.已知向量a=(1,2),b=(2,0),若向量λa+b與向量c=(1,-2)共線,則實數(shù)λ等于( )A.-2 B.-C.-1 D.-[答案] C[解析] λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b與c共線,∴-2(2+λ)-2λ=0,∴λ=-1.2.(文)已知向量a=(,1),b=(0,1),c=
【總結】平面向量基本定理及坐標運算1.選擇題1.若向量=(1,2),=(3,4),則=()A(4,6)B(-4,-6)C(-2,-2)D(2,2)2.若向量a=(x-2,3)與向量b=(1,y+2)相等,則 ()A.x=1,y=3 B.x=3,y=1 C.x=1,y=-5 D.x=5,y=-13.下列
【總結】必修四平面向量基礎練習題1.下列向量中,與向量不共線的一個向量()A.B.C.D.2.已知正六邊形,在下列表達式①;②;③;④中,與等價的有()A.個B.個C.個D.個3.如圖,的邊長為,分別是中點,記,,則()A.B.C.D.,但的值不確定4.若向量=(
【總結】平面向量一、選擇題:本大題共10小題,每小題5分,共50分。1、下列向量組中能作為表示它們所在平面內所有向量的基底的是()A.B.C.D.2、若ABCD是正方形,E是CD的中點,且,,則=()A.B. C.D.3、若向量與不共線,,且
2025-06-24 15:17
【總結】極坐標與參數(shù)方程高考精練(經(jīng)典39題)1.在極坐標系中,以點為圓心,半徑為3的圓與直線交于兩點.(1)求圓及直線的普通方程.(2)求弦長.2.在極坐標系中,曲線,過點A(5,α)(α為銳角且)作平行于的直線,且與曲線L分別交于B,C兩點.(Ⅰ)以極點為原點,極軸為x軸的正半軸,取與極坐標相同單位長度,建立平面直角坐標系,寫出曲線L和直線的普通方
2025-06-24 02:57
【總結】平面向量的概念及線性運算A組 專項基礎訓練一、選擇題(每小題5分,共20分)1.給出下列命題:①兩個具有公共終點的向量,一定是共線向量;②兩個向量不能比較大小,但它們的模能比較大小;③λa=0(λ為實數(shù)),則λ必為零;④λ,μ為實數(shù),若λa=μb,則a與b共線.其中錯誤命題的個數(shù)為 ( )A.1 B.2 C.3 D.4
【總結】高一數(shù)學班講義1平面向量一、向量的有關概念:既有大小又有方向的量叫做向量.向量的大小叫
2025-01-10 04:39
【總結】......平面向量一、知識溫故:既有大小又有方向的量叫向量,有二個要素:大小、方向.:①用有向線段表示;②用字母、等表示;③平面向量的坐標表示:分別取與軸、軸方向相同的兩個單位向量、作為基底。任作一個向量,由平面向量基本定理
2025-04-17 01:00