【總結(jié)】平面向量的坐標(biāo)運(yùn)算教案一、教學(xué)目標(biāo)1、知識(shí)與技能:掌握平面向量的坐標(biāo)運(yùn)算;2、過(guò)程與方法:通過(guò)對(duì)共線(xiàn)向量坐標(biāo)關(guān)系的探究,提高分析問(wèn)題、解決問(wèn)題的能力。3情感態(tài)度與價(jià)值觀:學(xué)會(huì)用坐標(biāo)進(jìn)行向量的相關(guān)運(yùn)算,理解數(shù)學(xué)內(nèi)容之間的內(nèi)在聯(lián)系。二、教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):平面向量的坐標(biāo)運(yùn)算。教學(xué)難點(diǎn):向量的坐標(biāo)表示的理解及運(yùn)算的準(zhǔn)確.三、教學(xué)設(shè)想(一
2025-04-17 01:00
【總結(jié)】平面向量一、選擇題1、已知向量( )A. B. C. D.2、已知向量則的坐標(biāo)是( )A. B. C. D.3、已知且∥,則x等于( )A.3 B. C. D.4、若則與的夾角的余弦值為( )A. B. C. D.5、若,與的夾角是,則等于( )A.12 B. C. D.
2025-06-22 14:20
【總結(jié)】1向量練習(xí)1設(shè)??20??,已知兩個(gè)向量????sin,cos1?OP,????cos2,sin22???OP,則向量21PP長(zhǎng)度的最大值是()A新疆源頭學(xué)子小屋特級(jí)教師王新敞htp:@:/2B新疆源頭學(xué)子小屋特級(jí)教師王新敞htp:@:/3C新疆源頭學(xué)子小屋特
2025-01-08 20:35
【總結(jié)】平面向量說(shuō)課稿我說(shuō)課的內(nèi)容是《平面向量的實(shí)際背景及基本概念》的教學(xué),所用的教材是人民教育出版社出版的普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修四,教學(xué)內(nèi)容為第74頁(yè)至76頁(yè).下面我從教材分析,重點(diǎn)難點(diǎn)突破,教學(xué)方法和教學(xué)過(guò)程設(shè)計(jì)四個(gè)方面來(lái)說(shuō)明我對(duì)這節(jié)課的教學(xué)設(shè)想.一教材分析1地位和作用向量是近
2025-04-16 23:06
【總結(jié)】…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線(xiàn)…………○…………學(xué)校:___________姓名:________班級(jí):________考號(hào):________…………○…………外…………○…………裝…………○…………訂…………○…………線(xiàn)…………○…………絕密★啟用前2018年01月19日214****9063的高中數(shù)學(xué)組卷試卷副標(biāo)題
2025-03-25 01:22
【總結(jié)】平面向量知識(shí)點(diǎn)歸納一.向量的基本概念與基本運(yùn)算1向量的概念:①向量:既有大小又有方向的量向量的大小即向量的模(長(zhǎng)度)向量不能比較大小,但向量的??梢员容^大小.②零向量:長(zhǎng)度為0的向量,記為,其方向是任意的,與任意向量平行,所以在有關(guān)向量平行(共線(xiàn))的問(wèn)題中務(wù)必看清楚是否有“非零向量”這個(gè)條件.③單位向量:模為1個(gè)單位長(zhǎng)度的向量④平行向量(共線(xiàn)向量):方向相同或
2025-06-22 14:05
【總結(jié)】平面向量專(zhuān)項(xiàng)練習(xí)題及答案一、選擇題1若三點(diǎn)共線(xiàn),則有()ABCD2設(shè),已知兩個(gè)向量,,則向量長(zhǎng)度的最大值是()ABCD3下列命題正確的是()A單位向量都相等B若與是共線(xiàn)向量,與是共線(xiàn)向量,則與是共線(xiàn)向量()C,則
2025-06-20 00:33
【總結(jié)】平面向量的坐標(biāo)運(yùn)算(一)(教案)中衛(wèi)市第一中學(xué)俞清華教學(xué)目標(biāo):知識(shí)與技能:(1)理解平面向量的坐標(biāo)概念;(2)掌握平面向量的坐標(biāo)運(yùn)算.過(guò)程與方法:(1)通過(guò)對(duì)坐標(biāo)平面內(nèi)點(diǎn)和向量的類(lèi)比,培養(yǎng)學(xué)生類(lèi)比推理的能力;(2)通過(guò)平面向量坐標(biāo)表示和坐標(biāo)運(yùn)算法則的推導(dǎo)培養(yǎng)學(xué)生歸納、猜想、演繹的能力;(3)通過(guò)用代數(shù)方法處理幾何問(wèn)題,提高學(xué)生用數(shù)形結(jié)合的思想方法解決問(wèn)題的能力.
【總結(jié)】第一篇:平面向量的數(shù)量積教案 、模、夾角 教學(xué)目標(biāo): 1、知識(shí)目標(biāo):推導(dǎo)并掌握平面向量數(shù)量積的坐標(biāo)表達(dá)式,會(huì)利用數(shù)量積求解向量的模、、能力目標(biāo):通過(guò)自主互助探究式學(xué)習(xí),培養(yǎng)學(xué)生的自學(xué)能力,啟發(fā)學(xué)...
2025-10-12 00:49
【總結(jié)】平面向量練習(xí)題一.填空題。1.等于________.2.若向量=(3,2),=(0,-1),則向量2-的坐標(biāo)是________.3.平面上有三個(gè)點(diǎn)A(1,3),B(2,2),C(7,x),若∠ABC=90°,則x的值為_(kāi)_______.、b滿(mǎn)足|a|=1,|b|=,(a+b)⊥(2a-b),則向量a與b的夾角為_(kāi)_______.5.已知向量=(1,2),
【總結(jié)】§平面向量的數(shù)量積一、選擇題1.若向量a,b,c滿(mǎn)足a∥b且a⊥c,則c·(a+2b)=( )A.4 B.3C.2 D.0解析:由a∥b及a⊥c,得b⊥c,則c·(a+2b)=c·a+2c·b=0.答案:D2.若向量a與
【總結(jié)】平面向量:1.已知向量a=(1,2),b=(2,0),若向量λa+b與向量c=(1,-2)共線(xiàn),則實(shí)數(shù)λ等于( )A.-2 B.-C.-1 D.-[答案] C[解析] λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b與c共線(xiàn),∴-2(2+λ)-2λ=0,∴λ=-1.2.(文)已知向量a=(,1),b=(0,1),c=
2025-03-25 01:23
【總結(jié)】設(shè)向量(1)若與垂直,求的值;(2)求的最大值;(3)若,求證:∥.答案:由與垂直,,即,;,最大值為32,所以的最大值為。由得,即,所以∥.來(lái)源:09年高考江蘇卷題型:解答題,難度:容易已知向量的夾角為60°,則的值為 C. D.
2025-01-15 03:33
【總結(jié)】向量概念加減法·基礎(chǔ)練習(xí)一、選擇題1.若是任一非零向量,是單位向量,下列各式①||>||;②∥;③||>0;④||=±1;⑤=,其中正確的有()A.①④⑤ B.③ C.①②③⑤ D.②③⑤2.四邊形ABCD中,若向量與是共線(xiàn)向量,則四邊形ABCD()A.是平行四邊形 B.是梯形C.是平行四邊形或梯形
【總結(jié)】第一篇:平面向量教案 平面向量的綜合應(yīng)用執(zhí)教人:執(zhí)教人:易燕子 考綱要求:“從學(xué)科的整體高度和思維價(jià)值的高度考慮問(wèn)題,在知識(shí)網(wǎng)絡(luò)交匯點(diǎn)設(shè)計(jì)試題,使考綱要求: 對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的考查達(dá)到必要的深度”...
2024-11-16 22:11