【總結】圓錐曲線有關焦點弦的幾個公式及應用如果圓錐曲線的一條弦所在的直線經(jīng)過焦點,則稱此弦為焦點弦。圓錐曲線的焦點弦問題涉及到離心率、直線斜率(或傾斜角)、定比分點(向量)、焦半徑和焦點弦長等有關知識。焦點弦是圓錐曲線的“動脈神經(jīng)”,集數(shù)學知識、思想方法和解題策略于一體,倍受命題人青睞,在近幾年的高考中頻頻亮相,題型多為小題且位置靠后屬客觀題中的壓軸題,也有作為大題進行考查的。本文介紹圓錐曲線有關焦
2025-07-25 12:41
【總結】軌跡方程經(jīng)典例題一、軌跡為圓的例題:1、必修2課本P124B組2:長為2a的線段的兩個端點在軸和軸上移動,求線段AB的中點M的軌跡方程:必修2課本P124B組:已知M與兩個定點(0,0),A(3,0)的距離之比為,求點M的軌跡方程;(一般地:必修2課本P144B組2:已知點M(,)與兩個定點的距離之比為一個常數(shù);討論點M(,)的軌跡方程(分=1,與1進行討論)
2025-03-25 00:04
【總結】......圓錐曲線經(jīng)典題型 一.選擇題(共10小題)1.直線y=x﹣1與雙曲線x2﹣=1(b>0)有兩個不同的交點,則此雙曲線離心率的范圍是( )A.(1,) B.(,+∞) C.(1,+∞) D.(1,)∪
2025-06-24 02:10
【總結】....圓錐曲線經(jīng)典題型 一.選擇題(共10小題)1.直線y=x﹣1與雙曲線x2﹣=1(b>0)有兩個不同的交點,則此雙曲線離心率的范圍是( ?。〢.(1,) B.(,+∞) C.(1,+∞) D.(1,)∪(,+∞)2.已知M(x0,y0)是雙曲線C:=1上的一點,F(xiàn)
2025-06-23 07:21
【總結】WORD資料可編輯橢圓與雙曲線的對偶性質--(必背的經(jīng)典結論)橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦P
2025-04-17 13:13
【總結】一、橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與對應準線相離.4.以焦點半徑PF1為直徑的圓必與以長軸為直徑的圓內切.5.若在橢圓上,則過的橢圓的切線方程是.6.若在橢圓外,則過Po作橢圓的兩條切線
2025-06-24 18:05
【總結】大慶目標教育圓錐曲線一、知識結構在平面直角坐標系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關系:(1)曲線上的點的坐標都是這個方程的解;(2);這條曲線叫做方程的曲線.點與曲線的關系若曲線C的方程是f(x,y)=0,則點P0(x0,y0)在曲線C上f(x0,y0)=0;點P0(x0,y0)
2025-08-04 14:02
【總結】知識結構?????圓錐曲線橢圓雙曲線拋物線標準方程幾何性質標準方程幾何性質標準方程幾何性質第二定義第二定義統(tǒng)一定義綜合應用橢圓雙曲線拋物線幾何條件與兩個定點的距離的和等于常數(shù)
2025-08-05 04:45
【總結】解析幾何中的參數(shù)取值范圍問題例1:選題意圖:利用三角形中的公理構建不等式xy設分別是橢圓的左、右焦點,若在直線上存在點P,使線段的中垂線過點,求橢圓離心率的取值范圍.解法一:設P,F(xiàn)1P的中點Q的坐標為,則kF1P=,kQF2=.由kF1P·kQF2=-1,得y2=.因為y2≥0,但注意b2+2c2≠0,所以2c2-b2>0,
2025-03-25 00:03
【總結】第九章 幾何問題的轉換解析幾何幾何問題的轉換一、基礎知識:在圓錐曲線問題中,經(jīng)常會遇到幾何條件與代數(shù)條件的相互轉化,合理的進行幾何條件的轉化往往可以起到“四兩撥千斤”的作用,極大的簡化運算的復雜程度,在本節(jié)中,將列舉常見的一些幾何條件的轉化。1、在幾何問題的轉化
【總結】圓錐曲線焦點弦長公式(極坐標參數(shù)方程)圓錐曲線的焦點弦問題是高考命題的大熱點,主要是在解答題中,全國文科一般為壓軸題的第22題,理科和各省市一般為第21題或者第20題,幾乎每一年都有考察。由于題目的綜合性很高的,運算量很大,屬于高難度題目,考試的得分率極低。本文介紹的焦點弦長公式是圓錐曲線(橢圓、雙曲線和拋物線)的通用公式,它是解決這類問題的金鑰匙,利用這個公式使得極其復雜的問題變得
2025-08-05 05:10
【總結】WORD資料可編輯圓錐曲線自編講義之基本量要求熟悉圓錐曲線的a、b、c、e、p、漸近線方程、準線方程、焦點坐標等數(shù)據(jù)的幾何意義和相互關系。(2011安徽理2)雙曲線的實軸長是 (A)2 (B)2 (C)4 (D)4【答案】C
2025-04-17 00:20
【總結】精心整理,祝高考學子有好成績高考圓錐曲線試題精選一、選擇題:(每小題5分,計50分)1、(2008海南、寧夏文)雙曲線的焦距為()A.3 B.4 C.3 D.42.(2004全國卷Ⅰ文、理)橢圓的兩個焦點為F1、F2,過F1作垂直于x軸的直線與橢圓相交,一個交點為P,則=() A.B.C.D.43.(
2025-08-05 18:10
【總結】圓錐曲線經(jīng)典題型 一.選擇題(共10小題)1.直線y=x﹣1與雙曲線x2﹣=1(b>0)有兩個不同的交點,則此雙曲線離心率的范圍是( ?。〢.(1,) B.(,+∞) C.(1,+∞) D.(1,)∪(,+∞)2.已知M(x0,y0)是雙曲線C:=1上的一點,F(xiàn)1,F(xiàn)2是C的左、右兩個焦點,若<0,則y0的取值范圍是( )A. B. C. D.3.設F1,F(xiàn)2分
2025-06-23 07:22
【總結】橢圓必背的經(jīng)典結論1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與對應準線相離.4.以焦點半徑PF1為直徑的圓必與以長軸為直徑的圓內切.5.若在橢圓上,則過的橢圓的切線方程是.6.若在橢圓外,則過Po作橢圓的兩
2025-06-24 04:00