【總結】第一篇:立體幾何的證明方法 立體幾何的證明方法 1.線面平行的證明方法 2.兩線平行的證明方法 7、空間平行、垂直之間的轉化與聯(lián)系: 應用判定定理時,注意由“低維”到“高維”:“線線...
2025-11-06 05:58
【總結】梯形常用輔助線的做法常見的梯形輔助線基本圖形如下:,把梯形的腰、兩底角等轉移到一個三角形中,同時還得到平行四邊形.【例1】已知:如圖,在梯形ABCD中,.求證:.分析:平移一腰BC到DE,將題中已知條件轉化在同一等腰三角形中解決,即AB=2CD.證明:過D作,交AB于E. ∵AB平行于CD,且,
2025-06-22 15:18
【總結】專業(yè)資料分享常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構造全等三角形,利用的思維模式是全等變換中的“旋轉”.3)遇到角平分線,可以自
2025-05-16 02:07
【總結】BS版八年級下階段核心方法角平分線中常用作輔助線的方法第一章三角形的證明4提示:點擊進入習題答案顯示123見習題見習題見習題見習題1.如圖,在△ABC中,AD平分∠BAC,∠C=2∠B.求證:AC+CD=AB.證
2025-03-12 12:19
【總結】三角形中作輔助線的常用方法舉例一、延長已知邊構造三角形:例如:如圖7-1:已知AC=BD,AD⊥AC于A,BC⊥BD于B,求證:AD=BC分析:欲證AD=BC,先證分別含有AD,BC的三角形全等,有幾種方案:△ADC與△BCD,△AOD與△BOC,△ABD與△BAC,但根據(jù)現(xiàn)有條件,均無法證全等,差角的相等,因此可設法作出新的角,且讓此角作為兩個三角形的公共角。證明:分別
2025-08-03 00:50
【總結】幾何輔助線練習之旋轉類旋轉技巧同步訓練題
2025-06-24 15:21
【總結】第一篇:輔助線幾何證明題 輔助線的幾何證明題 三角形輔助線做法 圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關系現(xiàn)。 角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看...
2025-10-13 20:13
【總結】專業(yè)資料分享三角形中作輔助線的常用方法舉例一、延長已知邊構造三角形:例如:如圖7-1:已知AC=BD,AD⊥AC于A,BC⊥BD于B,求證:AD=BC分析:欲證AD=BC,先證分別含有AD,BC的三角形全等,有幾種方案:△ADC與△BCD,△AOD與△BOC,△ABD與
2025-08-03 01:15
【總結】2020年12月19日星期六用空間向量解決立體幾何問題的步驟:(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關系以及它們之間距離和夾角等問題;(3)把向量的運算結果“翻譯”成相應的幾何意義。(化為向量問題)(進行向量運
2025-11-03 01:34
【總結】BS版八年級下階段核心方法等腰三角形中作輔助線的九種常用方法第一章三角形的證明4提示:點擊進入習題答案顯示671235見習題見習題見習題見習題見習題8見習題見習題見習題提示:點擊進入習題
2025-03-12 21:31
【總結】BS版七年級下階段核心方法等腰三角形中作輔助線的八種常用方法第五章生活中的軸對稱4提示:點擊進入習題答案顯示61235見習題見習題見習題見習題見習題見習題87見習題見習題1.如圖,在△ABC中,∠
2025-03-12 21:27
【總結】線、角、相交線、平行線(n≥2)個點,其中任何三點都不在同一直線上,那么每兩點畫一條直線,一共可以畫出n(n-1)條.〔n(n+1)+1〕個部分.,那么在這個圖形中共有線段的條數(shù)為n(n-1)條.(或延長線)上任一點分線段為兩段,這兩條線段的中點的距離等于線段長的一半.例:如圖,B在線段AC上,M是AB的中點,N是BC的中點.求證:MN=AC證明:∵M是A
2025-08-03 01:12
【總結】200*1504K282*2829K329*24510K295*24610K329*24510K333*2909K365*26710K400*34814K380*29511K
2025-10-01 10:22
【總結】第一篇:立體幾何的證明方法1] 立體幾何的證明方法總結 文字語言表述部分: 一、線線平行的證明方法 1、利用平行四邊形; 2、利用三角形或梯形的中位線; 3、如果一條直線和一個平面平行,經...
2025-11-06 05:28
【總結】中考幾何題證明思路總結一、證明兩線段相等 ?!?。 ?!??! !?。 ?!?。二、證明兩角相等 ?! ?。 ,底邊上的中線(或高)平分頂角?! ?、內錯角或平行四邊形的對角相等?! 。ɑ虻冉牵┑挠嘟牵ɑ蜓a角)相等。 ?。ɑ驁A)中,等弦(或?。┧鶎Φ膱A心角相等,圓周角相等,弦切角等于它所夾的弧對的圓周角。三、證
2025-03-24 12:34