【總結】CHAPTER3THEDERIVATIVE微積分學的創(chuàng)始人:德國數(shù)學家Leibniz微分學導數(shù)導數(shù)思想最早由法國數(shù)學家Ferma在研究極值問題中提出.英國數(shù)學家Newton?TwoProblemswithOneThemeTangentLines&SecantLin
2025-08-05 06:23
【總結】一、問題的提出二、積分上限函數(shù)及其導數(shù)三、牛頓-萊布尼茨公式四、小結思考題第三節(jié)微積分基本公式變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為21()dTTvtt?設某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv
2025-08-11 08:39
【總結】abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11
【總結】定義1設函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當極限存在
2025-07-22 11:10
【總結】歐亞書局微積分[第九版]方程式的圖形歐亞書局歐亞書局歐亞書局方程式的圖形學習目標§手繪方程式的圖形?!烨蠓匠淌綀D形的x截距和y截距?!鞂懗鰣A方程式的標準式?!烨髢蓚€圖形的交點?!煊脭?shù)學模型做為現(xiàn)實生活問題的模型並解之。第二章 函數(shù)、圖形與極限歐亞書局歐亞書局歐亞書局
2025-07-19 02:00
【總結】CHAPTER4THEDEFINITEINTEGRAL一、原函數(shù)與不定積分的概念機動目錄上頁下頁返回結束定義1.若在區(qū)間I上定義的兩個函數(shù)F(x)及f(x)滿足在區(qū)間I上的一個原函數(shù).則稱F(x)為f(x)定理.存在原函
2025-01-16 09:07
【總結】分數(shù)階微積分論文:非線性分數(shù)階微積分方程組解的存在唯一性及穩(wěn)定性【中文摘要】分數(shù)微積分不是求分數(shù)的微積分,也不是傳統(tǒng)微積分(微分、積分和變分)的一部分,,但在過去很長時間里,,許多工程人員指出,分數(shù)階微積分非常適用于用于描述各種物理、化學材料的性質,諸如,,應用
2025-01-18 14:34
【總結】旋轉體就是由一個平面圖形繞這平面內(nèi)一條直線旋轉一周而成的立體.這直線叫做旋轉軸.圓柱圓錐圓臺二、體積1.旋轉體的體積一般地,如果旋轉體是由連續(xù)曲線)(xfy?、直線ax?、bx?及x軸所圍成的曲邊梯形繞x軸旋轉一周而成的立體,體積為多少?取積分變量為x,],[bax?在],[
2025-04-21 03:33
【總結】問題???dxxex解決思路利用兩個函數(shù)乘積的求導法則.設函數(shù))(xuu?和)(xvv?具有連續(xù)導數(shù),??,vuvuuv???????,vuuvvu?????,dxvuuvdxvu??????.duvuvudv????分部積分公式第三節(jié)分部積分法容易計算.例1求積分.
【總結】第二講微積分基本公式?內(nèi)容提要1.變上限的定積分;-萊布尼茲公式。?教學要求;-萊布尼茲公式。?21)(TTdttv)()(12TsTs?一、變上限的定積分).()()(1221TsTsdttvTT????).()(tvts??其中一般地,若?
2025-05-15 01:35
【總結】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-01-19 21:34
2025-02-21 15:59
【總結】第一篇:微積分電子教案 第七章 第七章 無窮級數(shù) §無窮級數(shù)的概念無窮級數(shù)的基本性質 主要教學內(nèi)容 (1)無窮級數(shù)的概念;(2):掌握級數(shù)的基本概念及基本性質,:重點:::::2課時 一...
2025-10-31 05:10
【總結】微積分(BII)總結chapter8多元函數(shù)微分學多元函數(shù)的極限先看極限是否存在(一個方向組(y=kx)或兩個方向趨近于極限點(給定方向必須當x滿足極限過程時,y也滿足極限過程))。如果存在,能先求的先求,能用等價無窮小替換的就替換,最后考慮夾逼準則。偏導數(shù)點導數(shù)定義(多用于分段函數(shù)的分界點)例:求,就是求分段函數(shù)的
2025-06-29 12:49
【總結】設函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導數(shù),則有????bababavduuvudv.定積分的分部積分公式推導??,vuvuuv?????,)(babauvdxuv???,??????bababadxvudxvuuv.?????bababavduuvud
2025-04-21 05:00