【總結(jié)】【情境引入】1.觀察圖中的等腰三角形ABC,分別說出它們的腰、底邊、頂角和底角.等腰三角形的軸對稱性(1)【情境引入】2.把該等腰三角形沿頂角平分線折疊,你有什么發(fā)現(xiàn)?ABCADB(C)ABCD等腰三角形的軸對稱性(1)【探究活動】問題
2024-11-24 21:06
【總結(jié)】問題:1.等腰三角形有哪些性質(zhì)?等腰三角形的軸對稱性(3)2.怎樣判定一個三角形是等腰三角形?CEBAD:如圖,∠EAC是△ABC的外角,AD平分∠EAC,AD∥BC.求證:AB=AC.等腰三角形的軸對稱性(3)CEBAD
2024-11-24 21:08
【總結(jié)】例3:⑴如圖,順次連結(jié)⊙O的兩條直徑AC和BD的端點,所得的四邊形是什么特殊四邊形?ODCBA⑵如果要把直徑為30cm的圓柱形原木鋸成一根橫截面為正方形的木材,并使截面盡可能地大,應(yīng)怎樣鋸?最大橫截面面積是多少?⑶如果這根原木長15m,問鋸出地木材的體積為多少m3(樹皮等損耗略去不計)?ODC
2024-11-12 18:26
【總結(jié)】創(chuàng)設(shè)情境,引入新課復(fù)習(xí)提問:(2)正三角形是軸對稱性圖形嗎?(1)什么是軸對稱圖形(3)圓是否為軸對稱圖形?如果是,它的對稱軸是什么?你能找到多少條對稱軸?如果一個圖形沿著一條直線對折,兩側(cè)的圖形能完全重合,這個圖形就是軸對稱圖形。有幾條對稱軸?是3在白紙上任意作一個圓和這個
2024-11-27 23:42
【總結(jié)】135x55x30°1、求下列三角形中的xX=1253x?課前練習(xí):課前練習(xí):2、下列圖形是不是軸對稱圖形,如果是請畫出它的對稱軸。正方形矩形等腰三角形1、我們昨天所學(xué)的圓是不是軸對稱圖形?如果是,它的對稱軸是什么?你能找到多少條對稱軸?(同學(xué)之間進行交流)結(jié)
2024-08-10 17:46
【總結(jié)】在白紙上任意作一個圓和這個圓的任意一條直徑CD,然后沿著直徑所在的直線把紙折疊,你發(fā)現(xiàn)了什么?結(jié)論1:圓是軸對稱圖形,每一條直徑所在的直線都是對稱軸。強調(diào):判斷:任意一條直徑都是圓的對稱軸()X
2024-11-10 22:18
【總結(jié)】線段、角的軸對稱學(xué)習(xí)目標(biāo)1.能說出角平分線的性質(zhì)以及角的內(nèi)部到家兩邊距離相等的點在角的平分線上,并會用他們解決簡單的問題;2.在探索角的軸對稱性的過程中,體會類比的數(shù)學(xué)思想,學(xué)會有條理的思考和表達(dá)。班級檢測目標(biāo)學(xué)習(xí)重難點角平分線性質(zhì)及其互逆定理的應(yīng)用;學(xué)習(xí)過程學(xué)生糾錯(二次備課)課前導(dǎo)學(xué)1.在一張薄紙上
2024-12-09 13:10
【總結(jié)】圓的對稱性復(fù)習(xí)提問:1、什么是軸對稱圖形?我們在學(xué)過哪些軸對稱圖形?如果一個圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個圖形叫軸對稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對稱圖形呢?.圓的對稱性圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能
2024-10-18 06:59
【總結(jié)】九年級下冊第三章圓的對稱性.,圓心角、弦、弧中有一個量相等就可以推出其他的兩個量對應(yīng)相等,以及它們在解題中的應(yīng)用.一、圓的對稱性說一說(1)圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能找到多少條對稱軸?(2)你是怎么得出結(jié)論的?圓的對稱性:
2025-05-06 23:23
【總結(jié)】第四章分子對稱性與群論初步Chapter4.MolecularSymmetryandIntroductiontoGroupTheory第四章分子對稱性和分子點群Chapter4.MolecularSymmetryandPiontGroup對稱圖形的定義生物界的對稱
2024-08-20 14:09
【總結(jié)】第十二章分子的對稱性對稱操作:物體變換,其最后的位置與最初位置是物理上不可分辨的,以及物體中各對的點的距離保持不變;對稱元素與對稱操作的區(qū)別:對稱元素是一個幾何上存在的物,相對于它的是進行一個對稱操作。對稱元素:旋轉(zhuǎn)軸對稱操作:旋轉(zhuǎn)對稱元素與對稱操作分子中的四類對稱操作及相應(yīng)的對稱元素如下
2025-01-14 09:01
【總結(jié)】 線段、角的對稱性(1) 線段、角的對稱性(1)在一張薄紙上畫一條線段AB,操作并思考:線段是軸對稱圖形嗎?做一做線段是軸對稱圖形,它的對稱軸在哪里?為什么?想一想線段是軸對稱圖形,線段的垂直平分線是它的對稱軸. 線段、角的對稱性(1)想一想1.如圖,在線段AB的垂直平分線l上任意找一點P,連接PA、PB,
2025-06-06 05:28
【總結(jié)】軸對稱與軸對稱圖形(2)制作:何廣謀如圖,由6個全等的正方形組成L形圖案,請你在圖案中改變1個正方形的位置,使它變成軸對稱圖案。知識點回顧,∵_(dá)_____________,∴PA=PB.,∵_(dá)___________________,∴PC=PD.lOPBADC
2024-08-13 23:32
【總結(jié)】《等腰三角形的軸對稱性》(2) 一、選擇題1.如圖,已知OC平分∠AOB,CD∥OB,若OD=3cm,則CD等于( ?。〢.3cm B.4cm C. D.2cm2.△ABC中AB=AC,∠A=36°,BD平分∠ABC交AC于D,則圖中的等腰三角形有( ?。〢.1個 B.2個 C.3個 D.4個3.如圖,Rt△ABC中,CD是斜邊AB上的高,角平
2025-06-19 07:38
【總結(jié)】?對稱性和疊加性?奇偶虛實性?尺度變換特性?時移特性和頻移特性?微分和積分特性?卷積定理?Paseval定理§一、對稱性?若已知?則?????????dejFtftj)(21)(,)(21)(???????????dejFtftj
2025-01-14 15:26