【總結(jié)】線段、角的軸對稱學(xué)習(xí)目標(biāo)1.能說出角平分線的性質(zhì)以及角的內(nèi)部到家兩邊距離相等的點在角的平分線上,并會用他們解決簡單的問題;2.在探索角的軸對稱性的過程中,體會類比的數(shù)學(xué)思想,學(xué)會有條理的思考和表達(dá)。班級檢測目標(biāo)學(xué)習(xí)重難點角平分線性質(zhì)及其互逆定理的應(yīng)用;學(xué)習(xí)過程學(xué)生糾錯(二次備課)課前導(dǎo)學(xué)1.在一張薄紙上
2024-12-09 13:10
【總結(jié)】圓的對稱性復(fù)習(xí)提問:1、什么是軸對稱圖形?我們在學(xué)過哪些軸對稱圖形?如果一個圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個圖形叫軸對稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對稱圖形呢?.圓的對稱性圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能
2024-10-18 06:59
【總結(jié)】九年級下冊第三章圓的對稱性.,圓心角、弦、弧中有一個量相等就可以推出其他的兩個量對應(yīng)相等,以及它們在解題中的應(yīng)用.一、圓的對稱性說一說(1)圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能找到多少條對稱軸?(2)你是怎么得出結(jié)論的?圓的對稱性:
2025-05-06 23:23
【總結(jié)】第四章分子對稱性與群論初步Chapter4.MolecularSymmetryandIntroductiontoGroupTheory第四章分子對稱性和分子點群Chapter4.MolecularSymmetryandPiontGroup對稱圖形的定義生物界的對稱
2025-08-11 14:09
【總結(jié)】第十二章分子的對稱性對稱操作:物體變換,其最后的位置與最初位置是物理上不可分辨的,以及物體中各對的點的距離保持不變;對稱元素與對稱操作的區(qū)別:對稱元素是一個幾何上存在的物,相對于它的是進(jìn)行一個對稱操作。對稱元素:旋轉(zhuǎn)軸對稱操作:旋轉(zhuǎn)對稱元素與對稱操作分子中的四類對稱操作及相應(yīng)的對稱元素如下
2025-01-14 09:01
【總結(jié)】 線段、角的對稱性(1) 線段、角的對稱性(1)在一張薄紙上畫一條線段AB,操作并思考:線段是軸對稱圖形嗎?做一做線段是軸對稱圖形,它的對稱軸在哪里?為什么?想一想線段是軸對稱圖形,線段的垂直平分線是它的對稱軸. 線段、角的對稱性(1)想一想1.如圖,在線段AB的垂直平分線l上任意找一點P,連接PA、PB,
2025-06-06 05:28
【總結(jié)】軸對稱與軸對稱圖形(2)制作:何廣謀如圖,由6個全等的正方形組成L形圖案,請你在圖案中改變1個正方形的位置,使它變成軸對稱圖案。知識點回顧,∵_(dá)_____________,∴PA=PB.,∵_(dá)___________________,∴PC=PD.lOPBADC
2025-08-04 23:32
【總結(jié)】《等腰三角形的軸對稱性》(2) 一、選擇題1.如圖,已知OC平分∠AOB,CD∥OB,若OD=3cm,則CD等于( ?。〢.3cm B.4cm C. D.2cm2.△ABC中AB=AC,∠A=36°,BD平分∠ABC交AC于D,則圖中的等腰三角形有( )A.1個 B.2個 C.3個 D.4個3.如圖,Rt△ABC中,CD是斜邊AB上的高,角平
2025-06-19 07:38
【總結(jié)】?對稱性和疊加性?奇偶虛實性?尺度變換特性?時移特性和頻移特性?微分和積分特性?卷積定理?Paseval定理§一、對稱性?若已知?則?????????dejFtftj)(21)(,)(21)(???????????dejFtftj
2025-01-14 15:26
【總結(jié)】周期性的幾個結(jié)論?若f(x+a)=f(x+b)(a≠b),則f(x)是周期函數(shù),︱b-a︱是它的一個周期;?若f(x+a)=-f(x)(a≠0),則f(x)是周期函數(shù),2a?若f(x+a)=(a≠0,且f(x)≠0),則f(x)是周期函數(shù),
2024-11-06 20:13
【總結(jié)】招潮蟹√√√√××畫出它們的對稱軸.√√√√××畫出它們的對稱軸.圖片欣賞加拿大國旗澳門特區(qū)區(qū)徽圖片欣賞中國戲曲臉譜李天王巨靈神張飛蓋書文李逵圖片欣賞
2024-11-30 12:29
【總結(jié)】第四章分子對稱性與群論初步對稱性普遍存在于自然界如:花瓣、蝴蝶、人體、各種建筑、甚至優(yōu)美的樂章都有對稱性,有的存在對稱軸、有的存在對稱面。對稱性的研究在化學(xué)中有廣泛的應(yīng)用,如:分子立體構(gòu)型原子軌道的雜化,以及幾乎所有的電子光譜定律都是對對稱性的研究得出的。由于課時和課程性質(zhì)所限,我們只對基本知識作基本介紹詳細(xì)的數(shù)學(xué)推導(dǎo)不深入涉及,力求實用,某些
2025-04-28 23:37
【總結(jié)】思考:如圖,點A、B、C都在方格紙的格點上,請你再找一個格點D,使點A、B、C、D組成一個軸對稱圖形.BAC軸對稱的性質(zhì)(2)A1C1去掉網(wǎng)格線,你能找出點C關(guān)于直線AB的對應(yīng)點么?┏思考ACC1點A關(guān)于直線AB的對應(yīng)點有么?
2024-11-24 21:02
【總結(jié)】、角的軸對稱性一、知識點:1.線段的軸對稱性:①線段是軸對稱圖形,對稱軸有兩條;一條是線段所在的直線,另一條是這條線段的垂直平分線。②線段的垂直平分線上的點到線段兩端的距離相等。③到線段兩端距離相等的點,在這條線段的垂直平分線上。結(jié)論:線段的垂直平分線是到線段兩端距離相等的點的集合2.角的軸對稱性:①角是
2024-12-08 02:28
【總結(jié)】......與軸對稱相關(guān)的線段之和最短問題監(jiān)利縣第一初級中學(xué)劉光杰QQ1519819521一.問題的引入:在學(xué)習(xí)了作軸對稱圖形之后,人教版八年級上冊P42,有這樣一個問題在這個問題中,利用軸對稱,將
2025-03-24 05:48