【導(dǎo)讀】雞場的長BC為x米,面積為y平方米.養(yǎng)雞場的面積最大,最大面積是多少?變量的實際意義,確定自變量的取值范圍;次函數(shù)的最大值或最小值。從特殊到一般思想。B船位于A船正東26km處,現(xiàn)在A、B兩船同時出發(fā),時5km的速度向正西方向行駛,何時兩船相距最近?最近距離是多少?
【總結(jié)】二次函數(shù)在給定區(qū)間上的最值問題【學(xué)前思考】二次函數(shù)在閉區(qū)間上取得最值時的,只能是其圖像的頂點的橫坐標(biāo)或給定區(qū)間的端點.因此,影響二次函數(shù)在閉區(qū)間上的最值主要有三個因素:拋物線的開口方向、對稱軸以及給定區(qū)間的位置.在這三大因素中,最容易確定的是拋物線的開口方向(與二次項系數(shù)的正負(fù)有關(guān)),而關(guān)于對稱軸與給定區(qū)間的位置關(guān)系的討論是解決二次函數(shù)在給定區(qū)間上的最值問題的關(guān)鍵.
2025-03-24 06:25
【總結(jié)】閉區(qū)間上二次函數(shù)的最值問題一、?教材分析1、教學(xué)背景二次函數(shù)是重要的初等函數(shù)之一,很多問題都要化歸為二次函數(shù)來處理。二次函數(shù)又與一元二次方程、一元二次不等式有著密切的聯(lián)系,因此必須熟練掌握它的性質(zhì),并能靈活地運(yùn)用它的性質(zhì)去解決實際問題。二次函數(shù)在高考中占有重要的地位,而二次函數(shù)在閉區(qū)間上的最值在各個方面都有重要的應(yīng)用,主要考察我們分類討論和數(shù)形結(jié)合思想。這節(jié)課我們主要學(xué)會應(yīng)
2025-05-02 23:56
【總結(jié)】二次函數(shù)的應(yīng)用第1課時二次函數(shù)的應(yīng)用中的面積、利潤最值問題滬科版九年級數(shù)學(xué)上冊狀元成才路狀元成才路新課導(dǎo)入某水產(chǎn)養(yǎng)殖戶用長40m的圍網(wǎng),在水庫中圍一塊矩形的水面,投放魚苗.要使圍成的水面面積最大,則它的邊長應(yīng)是多少米?狀元成才路狀元成才路解:設(shè)圍成的矩形水面的一邊長為xm,那
2025-03-13 02:03
【總結(jié)】二次函數(shù)最值應(yīng)用題1:(導(dǎo)數(shù))統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時耗油量y(升)關(guān)于行駛速度x(千米/小時)的函數(shù)解析式可以表示為:,已知甲、乙兩地相距100千米.(1)當(dāng)汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?(2)當(dāng)汽車以多大的速度勻速行駛時,從甲地到乙地耗油量最少?最少為多少升?2:(條件最值)如圖所示,校園內(nèi)計劃修建一
2025-03-24 06:26
【總結(jié)】...... 二次函數(shù)中的最值問題重難點復(fù)習(xí)一般地,如果是常數(shù),,那么叫做的二次函數(shù).二次函數(shù)用配方法可化成:的形式的形式,得到頂點為(,),對稱軸是.,∴頂點是,對稱軸是直線.二次函數(shù)常用來解決最值
2025-03-24 12:30
【總結(jié)】【做一做】請你畫一個周長為10厘米的矩形,算算它的面積是多少?再和你的同伴比一比,發(fā)現(xiàn)了什么?同學(xué)長寬面積同學(xué)3同學(xué)23厘米2厘米6平方厘米4厘米1厘米4平方厘米同學(xué)1…………長和寬設(shè)置多少時矩形面積可以取到最大呢?解:設(shè)長為
2025-05-12 13:52
【總結(jié)】二次函數(shù)在閉區(qū)間上的最值石家莊市42中學(xué)于祝高中數(shù)學(xué)例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;10xy–23例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求
2024-10-17 04:08
【總結(jié)】 九年級《二次函數(shù)的最值問題》說課稿 各位老師好: 下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法分析、學(xué)情分析、教學(xué)過程分析、教學(xué)反思六大方面來闡述我對這節(jié)課的分析和設(shè)計: 一、教材分析 ...
2025-04-05 07:27
【總結(jié)】青年教師匯報課課題二次函數(shù)在給定區(qū)間上的最值執(zhí)教者唐瑩瑩(三)軸定區(qū)間動:例3:已知函數(shù)223yxx???,若??,1()xtttR???,求該函數(shù)的最大值和最小值。練練習(xí)習(xí)::已已知知函函數(shù)數(shù)??2,,122??????mmxxxy的最
2024-11-22 03:15
【總結(jié)】二次函數(shù)的實際應(yīng)用陡門鄉(xiāng)第二初級中學(xué)林惠注意:當(dāng)二次函數(shù)表示某個實際問題時,還必須根據(jù)題意確定自變量的取值范圍.:形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做二次函數(shù)自變量x的取值范圍是:任意實數(shù)(3)開口方向:當(dāng)a>0時,拋物線開口向上;當(dāng)a<0時,拋物線開口向下。
2024-11-21 23:05
【總結(jié)】 《實際問題中二次函數(shù)的最值問題》教學(xué)設(shè)計 一、教學(xué)目標(biāo) (1)能運(yùn)用二次函數(shù)的頂點式解決實際問題中的最大值問題,并能利用函數(shù)的圖象與性質(zhì)進(jìn)行解題。 (2)理解函數(shù)圖象頂...
2025-04-05 06:06
【總結(jié)】求二次函數(shù)的最值【例1】當(dāng)時,求函數(shù)的最大值和最小值.分析:作出函數(shù)在所給范圍的及其對稱軸的草圖,觀察圖象的最高點和最低點,由此得到函數(shù)的最大值、最小值及函數(shù)取到最值時相應(yīng)自變量的值.解:作出函數(shù)的圖象.當(dāng)時,,當(dāng)時,.【例2】當(dāng)時,求函數(shù)的最大值和最小值.解:作出函數(shù)的圖象.當(dāng)時,,當(dāng)時,.由上述兩例可以看到,二次函數(shù)在自變量的給定范圍內(nèi),
2025-06-20 01:33
【總結(jié)】二次方程根的分布與二次函數(shù)在閉區(qū)間上的最值歸納1、一元二次方程根的分布情況設(shè)方程的不等兩根為且,相應(yīng)的二次函數(shù)為,方程的根即為二次函數(shù)圖象與軸的交點,它們的分布情況見下面各表(每種情況對應(yīng)的均是充要條件)表一:(兩根與0的大小比較即根的正負(fù)情況)分布情況兩個負(fù)根即兩根都小于0兩個正根即兩根都大于0一正根一負(fù)根即一個根小于0,一個大于0大致圖象()
2025-05-16 01:34
【總結(jié)】中考壓軸題精選典型例題講解 二次函數(shù)——動點產(chǎn)生的線段最值問題【例1】如圖,在直角坐標(biāo)系中,點A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過A,B,C三點的拋物線的對稱軸為直線.(1)求拋物線的解析式及頂點D的坐標(biāo);(2)點E是拋物線的對稱軸上的一個動點,求當(dāng)AE+CE最小時點E的坐標(biāo);(3)點P是x軸上的一個動點,求當(dāng)PD+PC最小時點P的坐標(biāo);(4)
2025-03-24 06:23
【總結(jié)】《二次函數(shù)在閉區(qū)間上的最值問題》教學(xué)設(shè)計潼關(guān)中學(xué)郭傳濤1.教材分析二次函數(shù)是高中數(shù)學(xué)的重要內(nèi)容,是在學(xué)習(xí)了《函數(shù)》一節(jié)內(nèi)容之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對二次函數(shù)的概念等知識進(jìn)一步鞏固和深化,又可以為后面進(jìn)一步學(xué)習(xí)其它函數(shù),尤其是利用函數(shù)的圖像來研究函數(shù)的性質(zhì)打下堅實的基礎(chǔ),而含參數(shù)的二次函數(shù)是進(jìn)入高中以后學(xué)生遇到的新的問題,雖然在初中學(xué)生接觸過二次函數(shù),但是初中的要求比