freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

曲線擬合的最小二乘函數(shù)平方逼近初步-資料下載頁

2025-08-22 05:41本頁面

【導(dǎo)讀】插值法是使用插值多項(xiàng)式來逼近未知或復(fù)雜函數(shù)的,它要求插值函數(shù)與被插函數(shù)在插值節(jié)點(diǎn)上函數(shù)值相同,較好的近似,就是最佳逼近問題。必須找到一種度量標(biāo)準(zhǔn)來衡量什么是最佳逼近.就是常說的曲線擬合的最小二乘法.線性空間稱為內(nèi)積空間.為待定參數(shù)其中10,??樣本點(diǎn)與所有的數(shù)據(jù)點(diǎn)我們希望),)(()(10iiyxxxy????的基函數(shù)為設(shè)函數(shù)類mn?即生成的函數(shù)集是由也稱,),,1,0)((nixi????稱滿足條件的求函數(shù)的方法為。如何求擬合系數(shù)后在確定了擬合函數(shù)。誤差稱為最小二乘解的平方22*?***0101(,,,)(),,,nnaaaaaa求F的最小值極小值點(diǎn)的問題.

  

【正文】 因果性 F 值 P 值 LM 值 A I C 值 結(jié)論 2 GDP ? ???C O N S 拒絕 C O N S ? ???G D P 不拒絕 3 GDP ? ???C O N S 0. 001 拒絕 C O N S ? ???G D P 不拒絕 4 GDP ? ???C O N S 10E 04 10 拒絕 C O N S ? ???G D P 拒絕 5 GDP ? ???C O N S 拒絕 C O N S? ???G D P 拒絕 6 GDP? ???C O N S 不拒絕 C O N S? ???G D P 拒絕 63 隨著滯后階數(shù)的增加 , 拒絕 “ GDP是居民消費(fèi) CONS的原因 ” 的概率變大 , 而拒絕 “ 居民消費(fèi) CONS是 GDP的原因 ” 的概率變小 。 如果同時(shí)考慮檢驗(yàn)?zāi)P偷男蛄邢嚓P(guān)性以及赤池信息準(zhǔn)則 , 發(fā)現(xiàn): 滯后 4階或 5階的檢驗(yàn)?zāi)P筒痪哂?1階自相關(guān)性 , 而且也擁有較小的 AIC值 , 這時(shí) 判斷結(jié)果 是 :GDP與 CONS有雙向的格蘭杰因果關(guān)系 , 即相互影響 。 分析: 167。 模型設(shè)定偏誤問題 一、 模型設(shè)定偏誤的類型 二、 模型設(shè)定偏誤的后果 三、 模型設(shè)定偏誤的檢驗(yàn) 65 一、模型設(shè)定偏誤的類型 ? 模型設(shè)定偏誤主要有兩大類 : (1)關(guān)于解釋變量選取的偏誤 ,主要包括 漏選相關(guān)變量 和 多選無關(guān)變量 , (2)關(guān)于模型函數(shù)形式選取的偏誤 。 66 1. 相關(guān)變量的遺漏( omitting relevant variables) ? 例如 ,如果 “ 正確 ” 的模型為 : ???? ???? 22110 XXY而我們將模型設(shè)定為 : vXY ??? 110 ??即設(shè)定模型時(shí)漏掉了一個(gè)相關(guān)的解釋變量。 這類錯(cuò)誤稱為 遺漏相關(guān)變量 。 67 2. 無關(guān)變量的誤選 (including irrevelant variables) ? 例如 , 如果 Y=?0+?1X1+?2X2+? 仍為 “ 真 ” , 但我們將模型設(shè)定為 : Y=?0+ ?1X1+ ?2X2+ ?3X3 +? 即設(shè)定模型時(shí),多選了一個(gè)無關(guān)解釋變量。 68 3. 錯(cuò)誤的函數(shù)形式 (wrong functional form) ? 例如 ,如果 “ 真實(shí) ” 的回歸函數(shù)為 : ??? eXAXY 21 21?但卻將模型設(shè)定為 : vXXY ???? 22110 ???69 二、模型設(shè)定偏誤的后果 ? 當(dāng)模型設(shè)定出現(xiàn)偏誤時(shí),模型估計(jì)結(jié)果也會(huì)與 “ 實(shí)際 ” 有偏差。這種 偏差的性質(zhì)及程度與模型設(shè)定偏誤的類型密切相關(guān) 。 70 1. 遺漏相關(guān)變量偏誤 采用遺漏相關(guān)變量的模型進(jìn)行估計(jì)而帶來的偏誤稱為 遺漏相關(guān)變量偏誤 ( omitting relevant variable bias)。 設(shè)正確的模型為 : Y=?0+?1X1+?2X2+? 卻對(duì) Y=?0+ ?1X1+v 進(jìn)行回歸,得 : ???2111?iiixyx?71 將正確模型 Y=?0+?1X1+?2X2+? 的離差形式 : ???? ???? iiii xxy 2211代入 ???2111?iiixyx? 得 : ?????????????????21121212121221112111)()(?iiiiiiiiiiiiiixxxxxxxxxxyx?????????72 (1)如果漏掉的 X2與 X1相關(guān) , 則上式中的第二項(xiàng)在小樣本下求期望與大樣本下求概率極限都不會(huì)為零 , 從而使得 OLS估計(jì)量在小樣本下有偏 ,在大樣本下非一致 。 (2)如果 X2與 X1不相關(guān),則 ?1的估計(jì)滿足無偏性與一致性;但這時(shí) ?0的估計(jì)卻是有偏的。 73 由 Y=?0+ ?1X1+v 得 : ?? 2121 )?(ixV a r ??由 Y=?0+?1X1+?2X2+? 得 : ?? ? ?????? )1()()?(22122212221222121 xxiiiiiirxxxxxxV a r ???如果 X2與 X1相關(guān),顯然有 )?()?(11 ?? V a rV a r ?如果 X2與 X1不相關(guān),也有 )?()?(11 ?? V a rV a r ?Why? 74 2. 包含無關(guān)變量偏誤 采用包含無關(guān)解釋變量的模型進(jìn)行估計(jì)帶來的偏誤,稱為 包含無關(guān)變量偏誤 ( including irrelevant variable bias)。 設(shè) Y=?0+ ?1X1+v (*) 為正確模型,但卻估計(jì)了 Y=?0+?1X1+?2X2+? (**) 75 如果 ?2=0, 則 (**)與 (*)相同,因此,可將(**)式視為以 ?2=0為約束的 (*)式的特殊形式。 由于所有的經(jīng)典假設(shè)都滿足,因此對(duì) Y=?0+?1X1+?2X2+? (**) 式進(jìn)行 OLS估計(jì),可得到 無偏 且 一致 的估計(jì)量。 76 但是, OLS估計(jì)量卻不具有最小方差性。 Y=?0+ ?1X1+v 中 X1的方差 : ?? 2121 )?(ixV a r ??Y=?0+?1X1+?2X2+? 中 X1的方差 : ? ?? )1()?( 2212121 xxi rxV a r ?? 當(dāng) X1與 X2完全線性無關(guān)時(shí) : )?()?(11 ?? V a rV a r ? 否則: )?()?( 11 ?? V a rV a r ?注意: 77 3. 錯(cuò)誤函數(shù)形式的偏誤 當(dāng)選取了錯(cuò)誤函數(shù)形式并對(duì)其進(jìn)行估計(jì)時(shí),帶來的偏誤稱 錯(cuò)誤函數(shù)形式偏誤 ( wrong functional form bias)。容易判斷,這種 偏誤是全方位的 。 例如,如果 “ 真實(shí) ” 的回歸函數(shù)為 : ??? eXAXY 21 21?vXXY ???? 22110 ???卻估計(jì)線性式 顯然, 兩者的參數(shù)具有完全不同的經(jīng)濟(jì)含義,且估計(jì)結(jié)果一般也是不相同的。 78 三、模型設(shè)定偏誤的檢驗(yàn) 1. 檢驗(yàn)是否含有無關(guān)變量 可用 t 檢驗(yàn)與 F檢驗(yàn)完成。 檢驗(yàn)的基本思想 :如果模型中誤選了無關(guān)變量,則其系數(shù)的真值應(yīng)為零。因此,只須對(duì)無關(guān)變量系數(shù)的顯著性進(jìn)行檢驗(yàn)。 t檢驗(yàn) :檢驗(yàn)?zāi)?1個(gè)變量是否應(yīng)包括在模型中; 79 2. 檢驗(yàn)是否有相關(guān)變量的遺漏或函數(shù)形式設(shè)定偏誤 ( 1)殘差圖示法 F檢驗(yàn) :檢驗(yàn)若干個(gè)變量是否應(yīng)同時(shí)包括在模型中。 80 ? 殘差序列變化圖 ( a)趨勢(shì)變化 :模型設(shè)定時(shí)可能遺漏了一隨著時(shí)間的推移而持續(xù)上升的變量 ( b)循環(huán)變化:模型設(shè)定時(shí)可能遺漏了一隨著時(shí)間的推移而呈現(xiàn)循環(huán)變化的變量 81 ? 模型函數(shù)形式設(shè)定偏誤時(shí)殘差序列呈現(xiàn)正負(fù)交替變化 圖示: 一元回歸模型中,真實(shí)模型呈冪函數(shù)形式,但卻選取了線性函數(shù)進(jìn)行回歸。 82 ( 2)一般性設(shè)定偏誤檢驗(yàn) 但更準(zhǔn)確更常用的判定方法是拉姆齊(Ramsey)于 1969年提出的所謂 RESET 檢驗(yàn)( regression error specification test)。 基本思想: 如果事先知道遺漏了哪個(gè)變量,只需將此變量引入模型,估計(jì)并檢驗(yàn)其參數(shù)是否顯著不為零即可; 83 ⒈ 定義 ? 該式描述了簡化式參數(shù)與結(jié)構(gòu)式參數(shù)之間的關(guān)系,稱為參數(shù)關(guān)系體系。 ? ? ?? ? ? 1? ? ?Y X? ?? ? ?? ? ? ?Y XY X? ? ?? ? ?? ?1 1Y X? ?? ?
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1