freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx高考數(shù)學文人教a版一輪復(fù)習學案:高考大題專項(一)-突破2-利用導(dǎo)數(shù)研究與函數(shù)零點有關(guān)的問題-資料下載頁

2025-04-05 06:02本頁面
  

【正文】 ∞,0)上單調(diào)遞增,在(0,+∞)上單調(diào)遞減.g(0)=1,當x→∞時,g(x)→∞,當x→+∞時,g(x)→0+.函數(shù)g(x)的簡圖如圖所示.若f(x)有兩個零點,則y=a與g(x)有兩個交點,所以a的取值范圍是(0,1).對點訓(xùn)練3解(1)當a=1時,f(x)=exx2,則f39。(x)=ex1.當x0時,f39。(x)0。當x0時,f39。(x)0.所以f(x)在(∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增.(2)f39。(x)=exa.當a≤0時,f39。(x)0,所以f(x)在(∞,+∞)上單調(diào)遞增,故f(x)至多存在1個零點,不合題意.當a0時,由f39。(x)=0可得x=∈(∞,lna)時,f39。(x)0。當x∈(lna,+∞)時f39。(x)0.所以f(x)在(∞,lna)上單調(diào)遞減,在(lna,+∞)上單調(diào)遞增,故當x=lna時,f(x)取得最小值,最小值為f(lna)=a(1+lna).①若0a≤1e,則f(lna)≥0,f(x)在(∞,+∞)上至多存在1個零點,不合題意.②若a1e,則f(lna)0.由于f(2)=e20,所以f(x)在(∞,lna)上存在唯一零點.由(1)知,當x2時,exx20,所以當x4且x2ln(2a)時,f(x)=ex2ex2a(x+2)eln(2a)x2+2a(x+2)=2a0.故f(x)在(lna,+∞)上存在唯一零點.從而f(x)在(∞,+∞)上有兩個零點.綜上,a的取值范圍是1e,+∞.例4解(1)f39。(x)=6x22ax=2x(3xa).令f39。(x)=0,得x=0或x=a3.若a0,則當x∈(∞,0)∪a3,+∞時,f39。(x)0。當x∈0,a3時,f39。(x)0.故f(x)在(∞,0),a3,+∞上單調(diào)遞增,在0,a3上單調(diào)遞減.若a=0,f(x)在(∞,+∞)上單調(diào)遞增.若a0,則當x∈∞,a3∪(0,+∞)時,f39。(x)0。當x∈a3,0時,f39。(x)0.故f(x)在∞,a3,(0,+∞)上單調(diào)遞增,在a3,0上單調(diào)遞減.(2)滿足題設(shè)條件的a,b存在.①當a≤0時,由(1)知,f(x)在[0,1]上單調(diào)遞增,所以f(x)在區(qū)間[0,1]上的最小值為f(0)=b,最大值為f(1)=2a+,b滿足題設(shè)條件當且僅當b=1,2a+b=1,即a=0,b=1.②當a≥3時,由(1)知,f(x)在[0,1]上單調(diào)遞減,所以f(x)在區(qū)間[0,1]上的最大值為f(0)=b,最小值為f(1)=2a+,b滿足題設(shè)條件當且僅當2a+b=1,b=1,即a=4,b=1.③當0a3時,由(1)知,f(x)在[0,1]上的最小值為fa3=a327+b,最大值為b或2a+b.若a327+b=1,b=1,則a=332,與0a3矛盾.若a327+b=1,2a+b=1,則a=33或a=33或a=0,與0a3矛盾.綜上,當且僅當a=0,b=1或a=4,b=1時,f(x)在[0,1]上的最小值為1,最大值為1.對點訓(xùn)練4解(1)∵函數(shù)f(x)在[1,+∞)上單調(diào)遞增,∴f39。(x)=1xax1≥0在[1,+∞)上恒成立.∴a≤1x21x=1x12214,∴當x=2時,1x12214有最小值14,∴a的取值范圍為∞,14.(2),∵f39。(x)=1xax1,∴f39。(1)=1a1=a.∵函數(shù)f(x)在x=1處的切線平行于x軸,∴a=0,∴f(x)=lnxx.∵不等式x[f(x)+x1]k(x2)在x1時恒成立,∴xlnxxk(x2)在x1時恒成立,即xlnx(k+1)x+2k0在x1時恒成立,令g(x)=xlnx(k+1)x+2k,x1,∴g39。(x)=lnxk,當k≤0時,g39。(x)0在(1,+∞)上恒成立,即g(x)在(1,+∞)上單調(diào)遞增,g(x)g(1)=k10,則k1,矛盾。當k0時,令g39。(x)0,解得xek,令g39。(x)0,解得1xek.∴g(x)在(1,ek)上單調(diào)遞減,在(ek,+∞)上單調(diào)遞增.∴g(x)min=g(ek)=kek(k+1)ek+2k=2kek0,令h(k)=2kek,k0,則h39。(k)=2ek,∵當kln2時,h39。(k)0,函數(shù)h(k)單調(diào)遞增,當kln2時,h39。(k)0,函數(shù)h(k)單調(diào)遞減,∴h(k)max=h(ln2)=2ln22=2(ln21)0,∴不存在整數(shù)k使得2kek0恒成立.綜上所述不存在滿足條件的整數(shù)k. 13
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1