freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

中考數(shù)學二次函數(shù)提高練習題壓軸題訓練附詳細答案-資料下載頁

2025-03-31 07:28本頁面
  

【正文】 ⊥x軸于點P,設點N的橫坐標為t(),求△ABN的面積S與t的函數(shù)關系式;(3)若且時△OPN∽△COB,求點N的坐標.【答案】(1);(2);(3)(,)或(1,2).【解析】試題分析:(1)可設拋物線的解析式為,用待定系數(shù)法就可得到結論;(2)當時,點N在x軸的上方,則NP等于點N的縱坐標,只需求出AB,就可得到S與t的函數(shù)關系式;(3)由相似三角形的性質可得PN=2PO.而PO=,需分和0<t<2兩種情況討論,由PN=2PO得到關于t的方程,解這個方程,就可得到答案.試題解析:(1)設拋物線的解析式為,把C(0,1)代入可得:,∴,∴拋物線的函數(shù)關系式為:,即;(2)當時,>0,∴NP===,∴S=AB?PN==;(3)∵△OPN∽△COB,∴,∴,∴PN=2PO.①當時,PN===,PO==,∴,整理得:,解得:=,=,∵>0,<<0,∴t=,此時點N的坐標為(,);②當0<t<2時,PN===,PO==t,∴,整理得:,解得:=,=1.∵<0,0<1<2,∴t=1,此時點N的坐標為(1,2).綜上所述:點N的坐標為(,)或(1,2).考點:1.二次函數(shù)綜合題;2.待定系數(shù)法求二次函數(shù)解析式;3.相似三角形的性質.14.(本小題滿分12分)如圖,在平面直角坐標系xOy中,拋物線()與x軸交于A,B兩點(點A在點B的左側),經過點A的直線l:與y軸負半軸交于點C,與拋物線的另一個交點為D,且CD=4AC.(1)直接寫出點A的坐標,并求直線l的函數(shù)表達式(其中k,b用含a的式子表示);(2)點E是直線l上方的拋物線上的動點,若△ACE的面積的最大值為,求a的值;(3)設P是拋物線的對稱軸上的一點,點Q在拋物線上,以點A,D,P,Q為頂點的四邊形能否成為矩形?若能,求出點P的坐標;若不能,請說明理由.【答案】(1)A(-1,0),;(2);(3)P的坐標為(1,)或(1,-4).【解析】試題分析:(1)在中,令y=0,得到,得到A(-1,0),B(3,0),由直線l經過點A,得到,故,令,即,由于CD=4AC,故點D的橫坐標為4,即有,得到,從而得出直線l的函數(shù)表達式;(2)過點E作EF∥y軸,交直線l于點F,設E(,),則F(,),EF==,S△ACE=S△AFE-S△CFE==,故△ACE的面積的最大值為,而△ACE的面積的最大值為,所以 ,解得;(3)令,即,解得,得到D(4,5a),因為拋物線的對稱軸為,設P(1,m),然后分兩種情況討論:①若AD是矩形的一條邊,②若AD是矩形的一條對角線.試題解析:(1)∵=,令y=0,得到,∴A(-1,0),B(3,0),∵直線l經過點A,∴,∴,令,即,∵CD=4AC,∴點D的橫坐標為4,∴,∴,∴直線l的函數(shù)表達式為;(2)過點E作EF∥y軸,交直線l于點F,設E(,),則F(,),EF==,S△ACE=S△AFE-S△CFE= ==,∴△ACE的面積的最大值為,∵△ACE的面積的最大值為,∴ ,解得;(3)令,即,解得,∴D(4,5a),∵,∴拋物線的對稱軸為,設P(1,m),①若AD是矩形的一條邊,則Q(-4,21a),m=21a+5a=26a,則P(1,26a),∵四邊形ADPQ為矩形,∴∠ADP=90176。,∴,∴,即 ,∵,∴,∴P1(1,);②若AD是矩形的一條對角線,則線段AD的中點坐標為( ,),Q(2,),m=,則P(1,8a),∵四邊形APDQ為矩形,∴∠APD=90176。,∴,∴,即 ,∵,∴,∴P2(1,-4).綜上所述,以點A、D、P、Q為頂點的四邊形能成為矩形,點P的坐標為(1,)或(1,-4).考點:二次函數(shù)綜合題.15.已知拋物線的頂點為點D,并與x軸相交于A、B兩點(點A在點B的左側),與y軸相交于點C.(1)求點A、B、C、D的坐標;(2)在y軸的正半軸上是否存在點P,使以點P、O、A為頂點的三角形與△AOC相似?若存在,求出點P的坐標;若不存在,請說明理由;(3)取點E(,0)和點F(0,),直線l經過E、F兩點,點G是線段BD的中點.①點G是否在直線l上,請說明理由;②在拋物線上是否存在點M,使點M關于直線l的對稱點在x軸上?若存在,求出點M的坐標;若不存在,請說明理由.【答案】解:(1) D(,﹣4)(2) P(0,)或(0,)(3)詳見解析【解析】【分析】(1)令y=0,解關于x的一元二次方程求出A、B的坐標,令x=0求出點C的坐標,再根據(jù)頂點坐標公式計算即可求出頂點D的坐標.(2)根據(jù)點A、C的坐標求出OA、OC的長,再分OA和OA是對應邊,OA和OC是對應邊兩種情況,利用相似三角形對應邊成比例列式求出OP的長,從而得解.(3)①設直線l的解析式為y=kx+b(k≠0),利用待定系數(shù)法求一次函數(shù)解析式求出直線l的解析式,再利用中點公式求出點G的坐標,然后根據(jù)直線上點的坐標特征驗證即可.②設拋物線的對稱軸與x軸交點為H,求出OE、OF、HD、HB的長,然后求出△OEF和△HDB相似,根據(jù)相似三角形對應角相等求出∠OFE=∠HBD,然后求出EG⊥BD,從而得到直線l是線段BD的垂直平分線,根據(jù)線段垂直平分線的性質點D關于直線l的對稱點就是B,從而判斷出點M就是直線DE與拋物線的交點.再設直線DE的解析式為y=mx+n,利用待定系數(shù)法求一次函數(shù)解析求出直線DE的解析式,然后與拋物線解析式聯(lián)立求解即可得到符合條件的點M.【詳解】解:(1)在中,令y=0,則,整理得,4x2﹣12x﹣7=0,解得x1=,x2=.∴A(,0),B(,0).在中,令x=0,則y=.∴C(0,).∵,∴頂點D(,﹣4).(2)在y軸正半軸上存在符合條件的點P.設點P的坐標為(0,y),∵A(,0),C(0,),∴OA=,OC=,OP=y,①若OA和OA是對應邊,則△AOP∽△AOC,∴.∴y=OC=,此時點P(0,).②若OA和OC是對應邊,則△POA∽△AOC,∴,即.解得y=,此時點P(0,).綜上所述,符合條件的點P有兩個,P(0,)或(0,).(3)①設直線l的解析式為y=kx+b(k≠0),∵直線l經過點E(,0)和點F(0,),∴,解得,∴直線l的解析式為.∵B(,0),D(,﹣4),∴,∴線段BD的中點G的坐標為(,﹣2).當x=時,∴點G在直線l上.②在拋物線上存在符合條件的點M.設拋物線的對稱軸與x軸交點為H,則點H的坐標為(,0),∵E(,0)、F(0,),B(,0)、D(,﹣4),∴OE=,OF=,HD=4,HB=﹣=2.∵,∠OEF=∠HDB,∴△OEF∽△HDB.∴∠OFE=∠HBD.∵∠OEF+∠OFE=90176。,∴∠OEF+∠HBD=90176。.∴∠EGB=180176。﹣(∠OEF+∠HBD)=180176。﹣90176。=90176。,∴直線l是線段BD的垂直平分線.∴點D關于直線l的對稱點就是點B.∴點M就是直線DE與拋物線的交點.設直線DE的解析式為y=mx+n,∵D(,﹣4),E(,0),∴,解得.∴直線DE的解析式為.聯(lián)立,解得,.∴符合條件的點M有兩個,是(,﹣4)或(,).
點擊復制文檔內容
合同協(xié)議相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1