freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)易錯題專題訓(xùn)練-二次函數(shù)練習(xí)題附詳細(xì)答案-資料下載頁

2025-03-30 22:26本頁面
  

【正文】 4,)【點睛】本題是對二次函數(shù)的綜合知識考查,熟練掌握二次函數(shù),幾何圖形及輔助線方法是解決本題的關(guān)鍵,屬于壓軸題13.如圖1,在平面直角坐標(biāo)系中,直線與拋物線交于兩點,其中,.該拋物線與軸交于點,與軸交于另一點.(1)求的值及該拋物線的解析式。(2)(不與重合).分別以、為斜邊,在直線的同側(cè)作等腰直角△和等腰直角△,連接,試確定△面積最大時點的坐標(biāo).(3)、,在線段上是否存在點,使得以為頂點的三角形與△相似,若存在,請直接寫出點的坐標(biāo)。若不存在,請說明理由.【答案】(1);(2)當(dāng),即時,最大,此時,所以;(3)存在點坐標(biāo)為或.【解析】分析:(1)把A與B坐標(biāo)代入一次函數(shù)解析式求出m與n的值,確定出A與B坐標(biāo),代入二次函數(shù)解析式求出b與c的值即可; (2)由等腰直角△APM和等腰直角△DPN,得到∠MPN為直角,由兩直角邊乘積的一半表示出三角形MPN面積,利用二次函數(shù)性質(zhì)確定出三角形面積最大時P的坐標(biāo)即可; (3)存在,分兩種情況,根據(jù)相似得比例,求出AQ的長,利用兩點間的距離公式求出Q坐標(biāo)即可.詳解:(1)把A(m,0),B(4,n)代入y=x﹣1得:m=1,n=3,∴A(1,0),B(4,3). ∵y=﹣x2+bx+c經(jīng)過點A與點B,∴,解得:,則二次函數(shù)解析式為y=﹣x2+6x﹣5; (2)如圖2,△APM與△DPN都為等腰直角三角形,∴∠APM=∠DPN=45176。,∴∠MPN=90176。,∴△MPN為直角三角形,令﹣x2+6x﹣5=0,得到x=1或x=5,∴D(5,0),即DP=5﹣1=4,設(shè)AP=m,則有DP=4﹣m,∴PM=m,PN=(4﹣m),∴S△MPN=PM?PN=m(4﹣m)=﹣m2﹣m=﹣(m﹣2)2+1,∴當(dāng)m=2,即AP=2時,S△MPN最大,此時OP=3,即P(3,0); (3)存在,易得直線CD解析式為y=x﹣5,設(shè)Q(x,x﹣5),由題意得:∠BAD=∠ADC=45176。,分兩種情況討論:①當(dāng)△ABD∽△DAQ時,=,即=,解得:AQ=,由兩點間的距離公式得:(x﹣1)2+(x﹣5)2=,解得:x=,此時Q(,﹣); ②當(dāng)△ABD∽△DQA時,=1,即AQ=,∴(x﹣1)2+(x﹣5)2=10,解得:x=2,此時Q(2,﹣3). 綜上,點Q的坐標(biāo)為(2,﹣3)或(,﹣).點睛:本題屬于二次函數(shù)綜合題,涉及的知識有:待定系數(shù)法求函數(shù)解析式,二次函數(shù)的圖象與性質(zhì),相似三角形的判定與性質(zhì),兩點間的距離公式,熟練掌握各自的性質(zhì)是解答本題的關(guān)鍵.14.如圖,拋物線的圖象過點.(1)求拋物線的解析式;(2)在拋物線的對稱軸上是否存在一點P,使得△PAC的周長最小,若存在,請求出點P的坐標(biāo)及△PAC的周長;若不存在,請說明理由;(3)在(2)的條件下,在x軸上方的拋物線上是否存在點M(不與C點重合),使得?若存在,請求出點M的坐標(biāo);若不存在,請說明理由.【答案】(1);(2)存在,點,周長為:;(3)存在,點M坐標(biāo)為【解析】【分析】(1)由于條件給出拋物線與x軸的交點,故可設(shè)交點式,把點C代入即求得a的值,減小計算量.(2)由于點A、B關(guān)于對稱軸:直線對稱,故有,則,所以當(dāng)C、P、B在同一直線上時,最?。命cA、B、C的坐標(biāo)求AC、CB的長,求直線BC解析式,把代入即求得點P縱坐標(biāo).(3)由可得,當(dāng)兩三角形以PA為底時,高相等,即點C和點M到直線PA距離相等.又因為M在x軸上方,故有.由點A、P坐標(biāo)求直線AP解析式,即得到直線CM解析式.把直線CM解析式與拋物線解析式聯(lián)立方程組即求得點M坐標(biāo).【詳解】解:(1)∵拋物線與x軸交于點 ∴可設(shè)交點式 把點代入得:∴拋物線解析式為(2)在拋物線的對稱軸上存在一點P,使得的周長最?。鐖D1,連接PB、BC∵點P在拋物線對稱軸直線上,點A、B關(guān)于對稱軸對稱∵當(dāng)C、P、B在同一直線上時,最小最小設(shè)直線BC解析式為把點B代入得:,解得:∴直線BC:∴點使的周長最小,最小值為.(3)存在滿足條件的點M,使得.∵S△PAM=S△PAC∴當(dāng)以PA為底時,兩三角形等高∴點C和點M到直線PA距離相等∵M在x軸上方,設(shè)直線AP解析式為 解得:∴直線∴直線CM解析式為:解得:(即點C),∴點M坐標(biāo)為【點睛】考查了待定系數(shù)法求二次函數(shù)解析式、一次函數(shù)解析式,軸對稱的最短路徑問題,勾股定理,平行線間距離處處相等,一元二次方程的解法.其中第(3)題條件給出點M在x軸上方,無需分類討論,解法較常規(guī)而簡單.15.如圖,已知拋物線(a≠0)經(jīng)過A(﹣1,0)、B(3,0)、C(0,﹣3)三點,直線l是拋物線的對稱軸.(1)求拋物線的函數(shù)關(guān)系式;(2)設(shè)點P是直線l上的一個動點,當(dāng)點P到點A、點B的距離之和最短時,求點P的坐標(biāo);(3)點M也是直線l上的動點,且△MAC為等腰三角形,請直接寫出所有符合條件的點M的坐標(biāo).【答案】(1);(2)P(1,0);(3).【解析】試題分析:(1)直接將A、B、C三點坐標(biāo)代入拋物線的解析式中求出待定系數(shù)即可;(2)由圖知:A.B點關(guān)于拋物線的對稱軸對稱,那么根據(jù)拋物線的對稱性以及兩點之間線段最短可知,直線l與x軸的交點,即為符合條件的P點;(3)由于△MAC的腰和底沒有明確,因此要分三種情況來討論:①MA=AC、②MA=MC、③AC=MC;可先設(shè)出M點的坐標(biāo),然后用M點縱坐標(biāo)表示△MAC的三邊長,再按上面的三種情況列式求解.試題解析:(1)將A(﹣1,0)、B(3,0)、C(0,﹣3)代入拋物線中,得:,解得:,故拋物線的解析式:.(2)當(dāng)P點在x軸上,P,A,B三點在一條直線上時,點P到點A、點B的距離之和最短,此時x==1,故P(1,0);(3)如圖所示:拋物線的對稱軸為:x==1,設(shè)M(1,m),已知A(﹣1,0)、C(0,﹣3),則:=,==,=10;①若MA=MC,則,得:=,解得:m=﹣1;②若MA=AC,則,得:=10,得:m=;③若MC=AC,則,得:=10,得:,;當(dāng)m=﹣6時,M、A、C三點共線,構(gòu)不成三角形,不合題意,故舍去;綜上可知,符合條件的M點,且坐標(biāo)為 M(1,)(1,)(1,﹣1)(1,0).考點:二次函數(shù)綜合題;分類討論;綜合題;動點型.
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1