freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)二次函數(shù)的綜合題試題附答案-資料下載頁

2025-03-30 22:25本頁面
  

【正文】 t=,y=﹣+5+=<,于是得到他能將球直接射入球門.解:(1)由題意得:函數(shù)y=at2+5t+c的圖象經(jīng)過(0,)(,),∴,解得:,∴拋物線的解析式為:y=﹣t2+5t+,∴當(dāng)t=時,y最大=;(2)把x=28代入x=10t得t=,∴當(dāng)t=,y=﹣+5+=<,∴他能將球直接射入球門.考點:二次函數(shù)的應(yīng)用.13.在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+x+c的圖象經(jīng)過點C(0,2)和點D(4,﹣2).點E是直線y=﹣x+2與二次函數(shù)圖象在第一象限內(nèi)的交點.(1)求二次函數(shù)的解析式及點E的坐標(biāo).(2)如圖①,若點M是二次函數(shù)圖象上的點,且在直線CE的上方,連接MC,OE,ME.求四邊形COEM面積的最大值及此時點M的坐標(biāo).(3)如圖②,經(jīng)過A、B、C三點的圓交y軸于點F,求點F的坐標(biāo).【答案】(1)E(3,1);(2)S最大=,M坐標(biāo)為(,3);(3)F坐標(biāo)為(0,﹣).【解析】【分析】1)把C與D坐標(biāo)代入二次函數(shù)解析式求出a與c的值,確定出二次函數(shù)解析式,與一次函數(shù)解析式聯(lián)立求出E坐標(biāo)即可;(2)過M作MH垂直于x軸,與直線CE交于點H,四邊形COEM面積最大即為三角形CME面積最大,構(gòu)造出二次函數(shù)求出最大值,并求出此時M坐標(biāo)即可;(3)令y=0,求出x的值,得出A與B坐標(biāo),由圓周角定理及相似的性質(zhì)得到三角形AOC與三角形BOF相似,由相似得比例求出OF的長,即可確定出F坐標(biāo).【詳解】(1)把C(0,2),D(4,﹣2)代入二次函數(shù)解析式得: ,解得: ,即二次函數(shù)解析式為y=﹣x2+x+2,聯(lián)立一次函數(shù)解析式得:,消去y得:﹣x+2=﹣x2+x+2,解得:x=0或x=3,則E(3,1);(2)如圖①,過M作MH∥y軸,交CE于點H,設(shè)M(m,﹣m2+m+2),則H(m,﹣m+2),∴MH=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,S四邊形COEM=S△OCE+S△CME=23+MH?3=﹣m2+3m+3,當(dāng)m=﹣=時,S最大=,此時M坐標(biāo)為(,3);(3)連接BF,如圖②所示,當(dāng)﹣x2+x+20=0時,x1=,x2=,∴OA=,OB=,∵∠ACO=∠ABF,∠AOC=∠FOB,∴△AOC∽△FOB,∴ ,即 ,解得:OF=,則F坐標(biāo)為(0,﹣).【點睛】此題屬于二次函數(shù)綜合題,涉及的知識有:待定系數(shù)法求二次函數(shù)解析式,相似三角形的判定與性質(zhì),三角形的面積,二次函數(shù)圖象與性質(zhì),以及圖形與坐標(biāo)性質(zhì),熟練掌握各自的性質(zhì)是解本題的關(guān)鍵.14.如圖,△ABC的頂點坐標(biāo)分別為A(﹣6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點A的對應(yīng)點為D,拋物線y=ax2﹣10ax+c經(jīng)過點C,頂點M在直線BC上.(1)證明四邊形ABCD是菱形,并求點D的坐標(biāo);(2)求拋物線的對稱軸和函數(shù)表達式;(3)在拋物線上是否存在點P,使得△PBD與△PCD的面積相等?若存在,直接寫出點P的坐標(biāo);若不存在,請說明理由.【答案】(1)詳見解析(2)(3)詳見解析【解析】【分析】(1)根據(jù)勾股定理,翻折的性質(zhì)可得AB=BD=CD=AC,根據(jù)菱形的判定和性質(zhì)可得點D的坐標(biāo).(2)根據(jù)對稱軸公式可得拋物線的對稱軸,設(shè)M的坐標(biāo)為(5,n),直線BC的解析式為y=kx+b,根據(jù)待定系數(shù)法可求M的坐標(biāo),再根據(jù)待定系數(shù)法求出拋物線的函數(shù)表達式.(3)分點P在CD的上面下方和點P在CD的上方兩種情況,根據(jù)等底等高的三角形面積相等可求點P的坐標(biāo):設(shè)P,當(dāng)點P在CD的上面下方,根據(jù)菱形的性質(zhì),知點P是AD與拋物線的交點,由A,D的坐標(biāo)可由待定系數(shù)法求出AD的函數(shù)表達式:,二者聯(lián)立可得P1();當(dāng)點P在CD的上面上方,易知點P是∠D的外角平分線與拋物線的交點,此時,∠D的外角平分線與直線AD垂直,由相似可知∠D的外角平分線PD的斜率等于-2,可設(shè)其為,將D(10,8)代入可得PD的函數(shù)表達式:,與拋物線聯(lián)立可得P2(﹣5,38).【詳解】(1)證明:∵A(﹣6,0),B(4,0),C(0,8),∴AB=6+4=10,.∴AB=AC.由翻折可得,AB=BD,AC=CD.∴AB=BD=CD=AC.∴四邊形ABCD是菱形.∴CD∥AB.∵C(0,8),∴點D的坐標(biāo)是(10,8).(2)∵y=ax2﹣10ax+c,∴對稱軸為直線.設(shè)M的坐標(biāo)為(5,n),直線BC的解析式為y=kx+b,∴,解得.∴直線BC的解析式為y=﹣2x+8.∵點M在直線y=﹣2x+8上,∴n=﹣25+8=﹣2.∴M(5,-2).又∵拋物線y=ax2﹣10ax+c經(jīng)過點C和M,∴,解得.∴拋物線的函數(shù)表達式為.(3)存在.點P的坐標(biāo)為P1(),P2(﹣5,38)15.如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1)兩點,并與直線y=kx交于A、B兩點,直線l過點E(0,﹣2)且平行于x軸,過A、B兩點分別作直線l的垂線,垂足分別為點M、N.(1)求此拋物線的解析式;(2)求證:AO=AM;(3)探究:①當(dāng)k=0時,直線y=kx與x軸重合,求出此時的值;②試說明無論k取何值,的值都等于同一個常數(shù).【答案】解:(1)y=x2﹣1(2)詳見解析(3)詳見解析【解析】【分析】(1)把點C、D的坐標(biāo)代入拋物線解析式求出a、c,即可得解。(2)根據(jù)拋物線解析式設(shè)出點A的坐標(biāo),然后求出AO、AM的長,即可得證。(3)①k=0時,求出AM、BN的長,然后代入計算即可得解;②設(shè)點A(x1,x12﹣1),B(x2,x22﹣1),然后表示出,再聯(lián)立拋物線與直線解析式,消掉未知數(shù)y得到關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系表示出x1+x2,x1?2,并求出x12+x22,x12?x22,然后代入進行計算即可得解?!驹斀狻拷猓海?)∵拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1),∴,解得?!鄴佄锞€的解析式為y=x2﹣1。(2)證明:設(shè)點A的坐標(biāo)為(m,m2﹣1),則?!咧本€l過點E(0,﹣2)且平行于x軸,∴點M的縱坐標(biāo)為﹣2?!郃M=m2﹣1﹣(﹣2)=m2+1?!郃O=AM。(3)①k=0時,直線y=kx與x軸重合,點A、B在x軸上,∴AM=BN=0﹣(﹣2)=2,∴。②k取任何值時,設(shè)點A(x1,x12﹣1),B(x2,x22﹣1),則。聯(lián)立,消掉y得,x2﹣4kx﹣4=0,由根與系數(shù)的關(guān)系得,x1+x2=4k,x1?x2=﹣4,∴x12+x22=(x1+x2)2﹣2x1?x2=16k2+8,x12?x22=16。∴。∴無論k取何值,的值都等于同一個常數(shù)1。
點擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1