freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)專題訓(xùn)練---二次函數(shù)的綜合題分類及答案-資料下載頁

2025-03-30 22:25本頁面
  

【正文】 當(dāng)∠PBE=∠OCD時(shí),則△PBE∽△OCD,∴,即BP?OD=CO?PE,∴2(10﹣t)=4(t2+t),解得t=3或t=10(不合題意,舍去),∴當(dāng)t=3時(shí),∠PBE=∠OCD; 當(dāng)∠PBE=∠CDO時(shí),則△PBE∽△ODC,∴,即BP?OC=DO?PE,∴4(10﹣t)=2(t2+t),解得t=12或t=10(均不合題意,舍去)綜上所述∴當(dāng)t=3時(shí),∠PBE=∠OCD;(3)當(dāng)四邊形PMQN為正方形時(shí),則∠PMC=∠PNB=∠CQB=90176。,PM=PN,∴∠CQO+∠AQB=90176。,∵∠CQO+∠OCQ=90176。,∴∠OCQ=∠AQB,∴Rt△COQ∽R(shí)t△QAB,∴,即OQ?AQ=CO?AB,設(shè)OQ=m,則AQ=10﹣m,∴m(10﹣m)=44,解得m=2或m=8,①當(dāng)m=2時(shí),CQ==,BQ==,∴sin∠BCQ==,sin∠CBQ==,∴PM=PC?sin∠PCQ=t,PN=PB?sin∠CBQ=(10﹣t),∴t =(10﹣t),解得t=,②當(dāng)m=8時(shí),同理可求得t=,∴當(dāng)四邊形PMQN為正方形時(shí),t的值為或.點(diǎn)睛:本題為二次函數(shù)的綜合應(yīng)用,涉及矩形的性質(zhì)、待定系數(shù)法、相似三角形的判定和性質(zhì)、勾股定理、解直角三角形、方程思想等知識(shí).在(1)中注意利用矩形的性質(zhì)求得B點(diǎn)坐標(biāo)是解題的關(guān)鍵,在(2)中證得△PBE∽△OCD是解題的關(guān)鍵,在(3)中利用Rt△COQ∽R(shí)t△QAB求得CQ的長(zhǎng)是解題的關(guān)鍵.本題考查知識(shí)點(diǎn)較多,綜合性較強(qiáng),難度較大.14.如圖,已知二次函數(shù)y=ax2+bx+3 的圖象與x軸分別交于A(1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(1)求此二次函數(shù)解析式;(2)點(diǎn)D為拋物線的頂點(diǎn),試判斷△BCD的形狀,并說明理由;(3)將直線BC向上平移t(t0)個(gè)單位,平移后的直線與拋物線交于M,N兩點(diǎn)(點(diǎn)M在y軸的右側(cè)),當(dāng)△AMN為直角三角形時(shí),求t的值.【答案】(1);(2)△BCD為直角三角形,理由見解析;(3)當(dāng)△AMN為直角三角形時(shí),t的值為1或4.【解析】【分析】(1)根據(jù)點(diǎn)A、B的坐標(biāo),利用待定系數(shù)法即可求出二次函數(shù)解析式;(2)利用配方法及二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,可求出點(diǎn)C、D的坐標(biāo),利用兩點(diǎn)間的距離公式可求出CD、BD、BC的長(zhǎng),由勾股定理的逆定理可證出△BCD為直角三角形;(3)根據(jù)點(diǎn)B、C的坐標(biāo),利用待定系數(shù)法可求出直線BC的解析式,進(jìn)而可找出平移后直線的解析式,聯(lián)立兩函數(shù)解析式成方程組,通過解方程組可找出點(diǎn)M、N的坐標(biāo),利用兩點(diǎn)間的距離公式可求出AMANMN2的值,分別令三個(gè)角為直角,利用勾股定理可得出關(guān)于t的無理方程,解之即可得出結(jié)論.【詳解】(1)將、代入,得:,解得:,此二次函數(shù)解析式為.(2)為直角三角形,理由如下:,頂點(diǎn)的坐標(biāo)為.當(dāng)時(shí),點(diǎn)的坐標(biāo)為.點(diǎn)的坐標(biāo)為,,.,為直角三角形.(3)設(shè)直線的解析式為,將,代入,得:,解得:,直線的解析式為,將直線向上平移個(gè)單位得到的直線的解析式為.聯(lián)立新直線與拋物線的解析式成方程組,得:,解得:,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,.點(diǎn)的坐標(biāo)為,,.為直角三角形,分三種情況考慮:①當(dāng)時(shí),有,即,整理,得:,解得:,(不合題意,舍去);②當(dāng)時(shí),有,即,整理,得:,解得:,(不合題意,舍去);③當(dāng)時(shí),有,即,整理,得:.,該方程無解(或解均為增解).綜上所述:當(dāng)為直角三角形時(shí),的值為1或4.【點(diǎn)睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、待定系數(shù)法求一次函數(shù)解析式、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、勾股定理以及勾股定理的逆定理,解題的關(guān)鍵是:(1)根據(jù)點(diǎn)的坐標(biāo),利用待定系數(shù)法求出二次函數(shù)解析式;(2)利用兩點(diǎn)間的距離公式結(jié)合勾股定理的逆定理找出BC2+BD2=CD2;(3)分∠MAN=90176。、∠AMN=90176。及∠ANM=90176。三種情況考慮.15.拋物線y=x2+bx+c與x軸交于A(1,0),B(m,0),與y軸交于C.(1)若m=﹣3,求拋物線的解析式,并寫出拋物線的對(duì)稱軸;(2)如圖1,在(1)的條件下,設(shè)拋物線的對(duì)稱軸交x軸于D,在對(duì)稱軸左側(cè)的拋物線上有一點(diǎn)E,使S△ACE=S△ACD,求點(diǎn)E的坐標(biāo);(3)如圖2,設(shè)F(﹣1,﹣4),F(xiàn)G⊥y于G,在線段OG上是否存在點(diǎn)P,使∠OBP=∠FPG?若存在,求m的取值范圍;若不存在,請(qǐng)說明理由.【答案】(1)拋物線的解析式為:y=x2+2x﹣3=(x+1)2﹣4;對(duì)稱軸是:直線x=﹣1;(2)點(diǎn)E的坐標(biāo)為E(﹣4,5)(3)當(dāng)﹣4≤m<0或m=3時(shí),在線段OG上存在點(diǎn)P,使∠OBP=∠FPG.【解析】試題分析:(1)利用待定系數(shù)法求二次函數(shù)的解析式,并配方求對(duì)稱軸;(2)如圖1,設(shè)E(m,m2+2m﹣3),先根據(jù)已知條件求S△ACE=10,根據(jù)不規(guī)則三角形面積等于鉛直高度與水平寬度的積列式可求得m的值,并根據(jù)在對(duì)稱軸左側(cè)的拋物線上有一點(diǎn)E,則點(diǎn)E的橫坐標(biāo)小于﹣1,對(duì)m的值進(jìn)行取舍,得到E的坐標(biāo);(3)分兩種情況:①當(dāng)B在原點(diǎn)的左側(cè)時(shí),構(gòu)建輔助圓,根據(jù)直徑所對(duì)的圓周角是直角,只要滿足∠BPF=90176。就可以構(gòu)成∠OBP=∠FPG,如圖2,求出圓E與y軸有一個(gè)交點(diǎn)時(shí)的m值,則可得取值范圍;②當(dāng)B在原點(diǎn)的右側(cè)時(shí),只有△OBP是等腰直角三角形,△FPG也是等腰直角三角形時(shí)滿足條件,直接計(jì)算即可.試題解析:(1)當(dāng)m=﹣3時(shí),B(﹣3,0),把A(1,0),B(﹣3,0)代入到拋物線y=x2+bx+c中得:,解得,∴拋物線的解析式為:y=x2+2x﹣3=(x+1)2﹣4;對(duì)稱軸是:直線x=﹣1;(2)如圖1,設(shè)E(m,m2+2m﹣3),由題意得:AD=1+1=2,OC=3,S△ACE=S△ACD=ADOC=23=10,設(shè)直線AE的解析式為:y=kx+b,把A(1,0)和E(m,m2+2m﹣3)代入得,解得:,∴直線AE的解析式為:y=(m+3)x﹣m﹣3,∴F(0,﹣m﹣3),∵C(0,﹣3),∴FC=﹣m﹣3+3=﹣m,∴S△ACE=FC(1﹣m)=10,﹣m(1﹣m)=20,m2﹣m﹣20=0,(m+4)(m﹣5)=0,m1=﹣4,m2=5(舍),∴E(﹣4,5);(3)如圖2,當(dāng)B在原點(diǎn)的左側(cè)時(shí),連接BF,以BF為直徑作圓E,當(dāng)⊙E與y軸相切時(shí),設(shè)切點(diǎn)為P,∴∠BPF=90176。,∴∠FPG+∠OPB=90176。,∵∠OPB+∠OBP=90176。,∴∠OBP=∠FPG,連接EP,則EP⊥OG,∵BE=EF,∴EP是梯形的中位線,∴OP=PG=2,∵FG=1,tan∠FPG=tan∠OBP=,∴,∴m=﹣4,∴當(dāng)﹣4≤m<0時(shí),在線段OG上存在點(diǎn)P,使∠OBP=∠FPG;如圖3,當(dāng)B在原點(diǎn)的右側(cè)時(shí),要想滿足∠OBP=∠FPG,則∠OBP=∠OPB=∠FPG,∴OB=OP,∴△OBP是等腰直角三角形,△FPG也是等腰直角三角形,∴FG=PG=1,∴OB=OP=3,∴m=3,綜上所述,當(dāng)﹣4≤m<0或m=3時(shí),在線段OG上存在點(diǎn)P,使∠OBP=∠FPG.考點(diǎn):二次函數(shù)的綜合題.
點(diǎn)擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1