freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

20xx-20xx備戰(zhàn)中考數(shù)學專題訓練---二次函數(shù)的綜合題分類及答案-資料下載頁

2025-03-30 22:25本頁面
  

【正文】 當∠PBE=∠OCD時,則△PBE∽△OCD,∴,即BP?OD=CO?PE,∴2(10﹣t)=4(t2+t),解得t=3或t=10(不合題意,舍去),∴當t=3時,∠PBE=∠OCD; 當∠PBE=∠CDO時,則△PBE∽△ODC,∴,即BP?OC=DO?PE,∴4(10﹣t)=2(t2+t),解得t=12或t=10(均不合題意,舍去)綜上所述∴當t=3時,∠PBE=∠OCD;(3)當四邊形PMQN為正方形時,則∠PMC=∠PNB=∠CQB=90176。,PM=PN,∴∠CQO+∠AQB=90176。,∵∠CQO+∠OCQ=90176。,∴∠OCQ=∠AQB,∴Rt△COQ∽Rt△QAB,∴,即OQ?AQ=CO?AB,設OQ=m,則AQ=10﹣m,∴m(10﹣m)=44,解得m=2或m=8,①當m=2時,CQ==,BQ==,∴sin∠BCQ==,sin∠CBQ==,∴PM=PC?sin∠PCQ=t,PN=PB?sin∠CBQ=(10﹣t),∴t =(10﹣t),解得t=,②當m=8時,同理可求得t=,∴當四邊形PMQN為正方形時,t的值為或.點睛:本題為二次函數(shù)的綜合應用,涉及矩形的性質、待定系數(shù)法、相似三角形的判定和性質、勾股定理、解直角三角形、方程思想等知識.在(1)中注意利用矩形的性質求得B點坐標是解題的關鍵,在(2)中證得△PBE∽△OCD是解題的關鍵,在(3)中利用Rt△COQ∽Rt△QAB求得CQ的長是解題的關鍵.本題考查知識點較多,綜合性較強,難度較大.14.如圖,已知二次函數(shù)y=ax2+bx+3 的圖象與x軸分別交于A(1,0),B(3,0)兩點,與y軸交于點C(1)求此二次函數(shù)解析式;(2)點D為拋物線的頂點,試判斷△BCD的形狀,并說明理由;(3)將直線BC向上平移t(t0)個單位,平移后的直線與拋物線交于M,N兩點(點M在y軸的右側),當△AMN為直角三角形時,求t的值.【答案】(1);(2)△BCD為直角三角形,理由見解析;(3)當△AMN為直角三角形時,t的值為1或4.【解析】【分析】(1)根據(jù)點A、B的坐標,利用待定系數(shù)法即可求出二次函數(shù)解析式;(2)利用配方法及二次函數(shù)圖象上點的坐標特征,可求出點C、D的坐標,利用兩點間的距離公式可求出CD、BD、BC的長,由勾股定理的逆定理可證出△BCD為直角三角形;(3)根據(jù)點B、C的坐標,利用待定系數(shù)法可求出直線BC的解析式,進而可找出平移后直線的解析式,聯(lián)立兩函數(shù)解析式成方程組,通過解方程組可找出點M、N的坐標,利用兩點間的距離公式可求出AMANMN2的值,分別令三個角為直角,利用勾股定理可得出關于t的無理方程,解之即可得出結論.【詳解】(1)將、代入,得:,解得:,此二次函數(shù)解析式為.(2)為直角三角形,理由如下:,頂點的坐標為.當時,點的坐標為.點的坐標為,,.,為直角三角形.(3)設直線的解析式為,將,代入,得:,解得:,直線的解析式為,將直線向上平移個單位得到的直線的解析式為.聯(lián)立新直線與拋物線的解析式成方程組,得:,解得:,點的坐標為,點的坐標為,.點的坐標為,,.為直角三角形,分三種情況考慮:①當時,有,即,整理,得:,解得:,(不合題意,舍去);②當時,有,即,整理,得:,解得:,(不合題意,舍去);③當時,有,即,整理,得:.,該方程無解(或解均為增解).綜上所述:當為直角三角形時,的值為1或4.【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、待定系數(shù)法求一次函數(shù)解析式、二次函數(shù)圖象上點的坐標特征、勾股定理以及勾股定理的逆定理,解題的關鍵是:(1)根據(jù)點的坐標,利用待定系數(shù)法求出二次函數(shù)解析式;(2)利用兩點間的距離公式結合勾股定理的逆定理找出BC2+BD2=CD2;(3)分∠MAN=90176。、∠AMN=90176。及∠ANM=90176。三種情況考慮.15.拋物線y=x2+bx+c與x軸交于A(1,0),B(m,0),與y軸交于C.(1)若m=﹣3,求拋物線的解析式,并寫出拋物線的對稱軸;(2)如圖1,在(1)的條件下,設拋物線的對稱軸交x軸于D,在對稱軸左側的拋物線上有一點E,使S△ACE=S△ACD,求點E的坐標;(3)如圖2,設F(﹣1,﹣4),F(xiàn)G⊥y于G,在線段OG上是否存在點P,使∠OBP=∠FPG?若存在,求m的取值范圍;若不存在,請說明理由.【答案】(1)拋物線的解析式為:y=x2+2x﹣3=(x+1)2﹣4;對稱軸是:直線x=﹣1;(2)點E的坐標為E(﹣4,5)(3)當﹣4≤m<0或m=3時,在線段OG上存在點P,使∠OBP=∠FPG.【解析】試題分析:(1)利用待定系數(shù)法求二次函數(shù)的解析式,并配方求對稱軸;(2)如圖1,設E(m,m2+2m﹣3),先根據(jù)已知條件求S△ACE=10,根據(jù)不規(guī)則三角形面積等于鉛直高度與水平寬度的積列式可求得m的值,并根據(jù)在對稱軸左側的拋物線上有一點E,則點E的橫坐標小于﹣1,對m的值進行取舍,得到E的坐標;(3)分兩種情況:①當B在原點的左側時,構建輔助圓,根據(jù)直徑所對的圓周角是直角,只要滿足∠BPF=90176。就可以構成∠OBP=∠FPG,如圖2,求出圓E與y軸有一個交點時的m值,則可得取值范圍;②當B在原點的右側時,只有△OBP是等腰直角三角形,△FPG也是等腰直角三角形時滿足條件,直接計算即可.試題解析:(1)當m=﹣3時,B(﹣3,0),把A(1,0),B(﹣3,0)代入到拋物線y=x2+bx+c中得:,解得,∴拋物線的解析式為:y=x2+2x﹣3=(x+1)2﹣4;對稱軸是:直線x=﹣1;(2)如圖1,設E(m,m2+2m﹣3),由題意得:AD=1+1=2,OC=3,S△ACE=S△ACD=ADOC=23=10,設直線AE的解析式為:y=kx+b,把A(1,0)和E(m,m2+2m﹣3)代入得,解得:,∴直線AE的解析式為:y=(m+3)x﹣m﹣3,∴F(0,﹣m﹣3),∵C(0,﹣3),∴FC=﹣m﹣3+3=﹣m,∴S△ACE=FC(1﹣m)=10,﹣m(1﹣m)=20,m2﹣m﹣20=0,(m+4)(m﹣5)=0,m1=﹣4,m2=5(舍),∴E(﹣4,5);(3)如圖2,當B在原點的左側時,連接BF,以BF為直徑作圓E,當⊙E與y軸相切時,設切點為P,∴∠BPF=90176。,∴∠FPG+∠OPB=90176。,∵∠OPB+∠OBP=90176。,∴∠OBP=∠FPG,連接EP,則EP⊥OG,∵BE=EF,∴EP是梯形的中位線,∴OP=PG=2,∵FG=1,tan∠FPG=tan∠OBP=,∴,∴m=﹣4,∴當﹣4≤m<0時,在線段OG上存在點P,使∠OBP=∠FPG;如圖3,當B在原點的右側時,要想滿足∠OBP=∠FPG,則∠OBP=∠OPB=∠FPG,∴OB=OP,∴△OBP是等腰直角三角形,△FPG也是等腰直角三角形,∴FG=PG=1,∴OB=OP=3,∴m=3,綜上所述,當﹣4≤m<0或m=3時,在線段OG上存在點P,使∠OBP=∠FPG.考點:二次函數(shù)的綜合題.
點擊復制文檔內容
數(shù)學相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1