freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

太原中考數(shù)學(xué)壓軸題專題二次函數(shù)的經(jīng)典綜合題-資料下載頁

2025-04-02 00:25本頁面
  

【正文】 運動,動點Q從點A出發(fā),沿射線AE以每秒1個單位長度的速度向點E運動,當(dāng)點P運動到點A時,點Q也停止運動,設(shè)運動時間為t秒.①在P、Q的運動過程中,是否存在某一時刻t,使得△ADC與△PQA相似,若存在,求出t的值;若不存在,請說明理由.②在P、Q的運動過程中,是否存在某一時刻t,使得△APQ與△CAQ的面積之和最大?若存在,求出t的值;若不存在,請說明理由.【答案】(1)拋物線的解析式為y=;(2)①存在t=或t=,使得△ADC與△PQA相似;②當(dāng)t=時,△APQ與△CAQ的面積之和最大.【解析】分析:(1)應(yīng)用待定系數(shù)法求解析式(2)①分別用t表示△ADC、△PQA各邊,應(yīng)用分類討論相似三角形比例式,求t值;②分別用t表示△APQ與△CAQ的面積之和,討論最大值.詳解:(1)∵OA=1,OB=4,∴A(1,0),B(﹣4,0),設(shè)拋物線的解析式為y=a(x+4)(x﹣1),∵點C(0,﹣)在拋物線上,∴﹣,解得a=.∴拋物線的解析式為y=.(2)存在t,使得△ADC與△PQA相似.理由:①在Rt△AOC中,OA=1,OC=,則tan∠ACO=,∵tan∠OAD=,∴∠OAD=∠ACO,∵直線l的解析式為y=,∴D(0,﹣),∵點C(0,﹣),∴CD=,由AC2=OC2+OA2,得AC=,在△AQP中,AP=AB﹣PB=5﹣2t,AQ=t,由∠PAQ=∠ACD,要使△ADC與△PQA相似,只需或,則有或,解得t1=,t2=,∵t1<,t2<,∴存在t=或t=,使得△ADC與△PQA相似;②存在t,使得△APQ與△CAQ的面積之和最大,理由:作PF⊥AQ于點F,CN⊥AQ于N,在△APF中,PF=AP?sin∠PAF=,在△AOD中,由AD2=OD2+OA2,得AD=,在△ADC中,由S△ADC= ,∴CN=,∴S△AQP+S△AQC= ,∴當(dāng)t=時,△APQ與△CAQ的面積之和最大.點睛:本題為代數(shù)、幾何綜合題,考查待定系數(shù)法、相似三角形判定、二次函數(shù)最值,應(yīng)用了分類討論和數(shù)形結(jié)合思想.14.拋物線,若a,b,c滿足b=a+c,則稱拋物線為“恒定”拋物線.(1)求證:“恒定”拋物線必過x軸上的一個定點A;(2)已知“恒定”拋物線的頂點為P,與x軸另一個交點為B,是否存在以Q為頂點,與x軸另一個交點為C的“恒定”拋物線,使得以PA,CQ為邊的四邊形是平行四邊形?若存在,求出拋物線解析式;若不存在,請說明理由.【答案】(1)證明見試題解析;(2),或.【解析】試題分析:(1)由“恒定”拋物線的定義,即可得出拋物線恒過定點(﹣1,0);(2)求出拋物線的頂點坐標(biāo)和B的坐標(biāo),由題意得出PA∥CQ,PA=CQ;存在兩種情況:①作QM⊥AC于M,則QM=OP=,證明Rt△QMC≌Rt△POA,MC=OA=1,得出點Q的坐標(biāo),設(shè)拋物線的解析式為,把點A坐標(biāo)代入求出a的值即可;②頂點Q在y軸上,此時點C與點B重合;證明△OQC≌△OPA,得出OQ=OP=,得出點Q坐標(biāo),設(shè)拋物線的解析式為,把點C坐標(biāo)代入求出a的值即可.試題解析:(1)由“恒定”拋物線,得:b=a+c,即a﹣b+c=0,∵拋物線,當(dāng)x=﹣1時,y=0,∴“恒定”拋物線必過x軸上的一個定點A(﹣1,0);(2)存在;理由如下:∵“恒定”拋物線,當(dāng)y=0時,解得:x=177。1,∵A(﹣1,0),∴B(1,0);∵x=0時,y=,∴頂點P的坐標(biāo)為(0,),以PA,CQ為邊的平行四邊形,PA、CQ是對邊,∴PA∥CQ,PA=CQ,∴存在兩種情況:①如圖1所示:作QM⊥AC于M,則QM=OP=,∠QMC=90176。=∠POA,在Rt△QMC和Rt△POA中,∵CQ=PA,QM=OP,∴Rt△QMC≌Rt△POA(HL),∴MC=OA=1,∴OM=2,∵點A和點C是拋物線上的對稱點,∴AM=MC=1,∴點Q的坐標(biāo)為(﹣2,),設(shè)以Q為頂點,與x軸另一個交點為C的“恒定”拋物線的解析式為,把點A(﹣1,0)代入得:a=,∴拋物線的解析式為:,即;②如圖2所示:頂點Q在y軸上,此時點C與點B重合,∴點C坐標(biāo)為(1,0),∵CQ∥PA,∴∠OQC=∠OPA,在△OQC和△OPA中,∵∠OQC=∠OPA,∠COQ=∠AOP,CQ=PA,∴△OQC≌△OPA(AAS),∴OQ=OP=,∴點Q坐標(biāo)為(0,),設(shè)以Q為頂點,與x軸另一個交點為C的“恒定”拋物線的解析式為,把點C(1,0)代入得:a=,∴拋物線的解析式為:;綜上所述:存在以Q為頂點,與x軸另一個交點為C的“恒定”拋物線,使得以PA,CQ為邊的四邊形是平行四邊形,拋物線的解析式為:,或.考點:1.二次函數(shù)綜合題;2.壓軸題;3.新定義;4.存在型;5.分類討論.15.如圖,拋物線y=ax2+bx經(jīng)過△OAB的三個頂點,其中點A(1,),點B(3,﹣),O為坐標(biāo)原點.(1)求這條拋物線所對應(yīng)的函數(shù)表達式;(2)若P(4,m),Q(t,n)為該拋物線上的兩點,且n<m,求t的取值范圍;(3)若C為線段AB上的一個動點,當(dāng)點A,點B到直線OC的距離之和最大時,求∠BOC的大小及點C的坐標(biāo).【答案】(1);(2)t>4;(3)∠BOC=60176。,C(,)【解析】分析:(1)將已知點坐標(biāo)代入y=ax2+bx,求出a、b的值即可;(2)利用拋物線增減性可解問題;(3)觀察圖形,點A,點B到直線OC的距離之和小于等于AB;同時用點A(1,),點B(3,﹣)求出相關(guān)角度.詳解:(1)把點A(1,),點B(3,﹣)分別代入y=ax2+bx得 ,解得∴y=﹣(2)由(1)拋物線開口向下,對稱軸為直線x=,當(dāng)x>時,y隨x的增大而減小,∴當(dāng)t>4時,n<m.(3)如圖,設(shè)拋物線交x軸于點F,分別過點A、B作AD⊥OC于點D,BE⊥OC于點E∵AC≥AD,BC≥BE,∴AD+BE≤AC+BE=AB,∴當(dāng)OC⊥AB時,點A,點B到直線OC的距離之和最大.∵A(1,),點B(3,﹣),∴∠AOF=60176。,∠BOF=30176。,∴∠AOB=90176。,∴∠ABO=30176。.當(dāng)OC⊥AB時,∠BOC=60176。,點C坐標(biāo)為(,).點睛:本題考查綜合考查用待定系數(shù)法求二次函數(shù)解析式,拋物線的增減性.解答問題時注意線段最值問題的轉(zhuǎn)化方法.
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1