freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學(xué)二次函數(shù)綜合題匯編含答案-資料下載頁(yè)

2025-03-31 22:12本頁(yè)面
  

【正文】 )①.②當(dāng)m=﹣2時(shí),S最大,最大值為1,此時(shí)點(diǎn)E的坐標(biāo)為(﹣2,2).【解析】【分析】(1)根據(jù)函數(shù)圖象經(jīng)過的三點(diǎn),用待定系數(shù)法確定二次函數(shù)的解析式即可.(2)根據(jù)BC是定值,得到當(dāng)PB+PC最小時(shí),△PBC的周長(zhǎng)最小,根據(jù)點(diǎn)的坐標(biāo)求得相應(yīng)線段的長(zhǎng)即可.(3)設(shè)點(diǎn)E的橫坐標(biāo)為m,表示出E(m,2m+6),F(xiàn)(m,),最后表示出EF的長(zhǎng),從而表示出S于m的函數(shù)關(guān)系,然后求二次函數(shù)的最值即可.【詳解】解:(1)∵拋物線經(jīng)過A(-3,0),B(1,0),∴可設(shè)拋物線交點(diǎn)式為.又∵拋物線經(jīng)過C(0,3),∴.∴拋物線的解析式為:,即.(2)∵△PBC的周長(zhǎng)為:PB+PC+BC,且BC是定值.∴當(dāng)PB+PC最小時(shí),△PBC的周長(zhǎng)最小.∵點(diǎn)A、點(diǎn)B關(guān)于對(duì)稱軸I對(duì)稱,∴連接AC交l于點(diǎn)P,即點(diǎn)P為所求的點(diǎn).∵AP=BP,∴△PBC的周長(zhǎng)最小是:PB+PC+BC=AC+BC.∵A(-3,0),B(1,0),C(0,3),∴AC=3,BC=.∴△PBC的周長(zhǎng)最小是:.(3)①∵拋物線頂點(diǎn)D的坐標(biāo)為(﹣1,4),A(﹣3,0),∴直線AD的解析式為y=2x+6∵點(diǎn)E的橫坐標(biāo)為m,∴E(m,2m+6),F(xiàn)(m,)∴.∴.∴S與m的函數(shù)關(guān)系式為.②,∴當(dāng)m=﹣2時(shí),S最大,最大值為1,此時(shí)點(diǎn)E的坐標(biāo)為(﹣2,2).13.如圖,在平面直角坐標(biāo)系中,已知點(diǎn)的坐標(biāo)為,且,拋物線圖象經(jīng)過三點(diǎn).(1)求兩點(diǎn)的坐標(biāo);(2)求拋物線的解析式;(3)若點(diǎn)是直線下方的拋物線上的一個(gè)動(dòng)點(diǎn),作于點(diǎn),當(dāng)?shù)闹底畲髸r(shí),求此時(shí)點(diǎn)的坐標(biāo)及的最大值.【答案】解:(1)點(diǎn)A、C的坐標(biāo)分別為(4,0)、(0,﹣4);;(2)拋物線的表達(dá)式為: ;(3)PD有最大值,當(dāng)x=2時(shí),其最大值為,此時(shí)點(diǎn)P(2,﹣6).【解析】【分析】(1)OA=OC=4OB=4,即可求解;(2)拋物線的表達(dá)式為: ,即可求解;(3),即可求解.【詳解】解:(1)OA=OC=4OB=4,故點(diǎn)A、C的坐標(biāo)分別為(4,0)、(0,﹣4);(2)拋物線的表達(dá)式為:,即﹣4a=﹣4,解得:a=1,故拋物線的表達(dá)式為: ;(3)直線CA過點(diǎn)C,設(shè)其函數(shù)表達(dá)式為:,將點(diǎn)A坐標(biāo)代入上式并解得:k=1,故直線CA的表達(dá)式為:y=x﹣4,過點(diǎn)P作y軸的平行線交AC于點(diǎn)H,∵OA=OC=4, ,∵ ,設(shè)點(diǎn) ,則點(diǎn)H(x,x﹣4),∵ <0,∴PD有最大值,當(dāng)x=2時(shí),其最大值為,此時(shí)點(diǎn)P(2,﹣6).【點(diǎn)睛】本題考查的是二次函數(shù)綜合運(yùn)用,涉及到一次函數(shù)、解直角三角形、圖象的面積計(jì)算等,其中(3),用函數(shù)關(guān)系表示PD,是本題解題的關(guān)鍵14.如圖甲,直線y=﹣x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,經(jīng)過B、C兩點(diǎn)的拋物線y=x2+bx+c與x軸的另一個(gè)交點(diǎn)為A,頂點(diǎn)為P.(1)求該拋物線的解析式;(2)在該拋物線的對(duì)稱軸上是否存在點(diǎn)M,使以C,P,M為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫出所符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由;(3)當(dāng)0<x<3時(shí),在拋物線上求一點(diǎn)E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點(diǎn)坐標(biāo)為(,)時(shí),△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點(diǎn)坐標(biāo)及對(duì)稱軸,可設(shè)出M點(diǎn)坐標(biāo),表示出MC、MP和PC的長(zhǎng),分MC=MP、MC=PC和MP=PC三種情況,可分別得到關(guān)于M點(diǎn)坐標(biāo)的方程,可求得M點(diǎn)的坐標(biāo);(3)過E作EF⊥x軸,交直線BC于點(diǎn)F,交x軸于點(diǎn)D,可設(shè)出E點(diǎn)坐標(biāo),表示出F點(diǎn)的坐標(biāo),表示出EF的長(zhǎng),進(jìn)一步可表示出△CBE的面積,利用二次函數(shù)的性質(zhì)可求得其取得最大值時(shí)E點(diǎn)的坐標(biāo).試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,∴B(3,0),C(0,3),把B、C坐標(biāo)代入拋物線解析式可得,解得,∴拋物線解析式為y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線對(duì)稱軸為x=2,P(2,﹣1),設(shè)M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM為等腰三角形,∴有MC=MP、MC=PC和MP=PC三種情況,①當(dāng)MC=MP時(shí),則有=|t+1|,解得t=,此時(shí)M(2,);②當(dāng)MC=PC時(shí),則有=2,解得t=﹣1(與P點(diǎn)重合,舍去)或t=7,此時(shí)M(2,7);③當(dāng)MP=PC時(shí),則有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此時(shí)M(2,﹣1+2)或(2,﹣1﹣2);綜上可知存在滿足條件的點(diǎn)M,其坐標(biāo)為(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如圖,過E作EF⊥x軸,交BC于點(diǎn)F,交x軸于點(diǎn)D,設(shè)E(x,x2﹣4x+3),則F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF?OD+EF?BD=EF?OB=3(﹣x2+3x)=﹣(x﹣)2+,∴當(dāng)x=時(shí),△CBE的面積最大,此時(shí)E點(diǎn)坐標(biāo)為(,),即當(dāng)E點(diǎn)坐標(biāo)為(,)時(shí),△CBE的面積最大.考點(diǎn):二次函數(shù)綜合題.15.復(fù)習(xí)課中,教師給出關(guān)于x的函數(shù)(k是實(shí)數(shù)).教師:請(qǐng)獨(dú)立思考,并把探索發(fā)現(xiàn)的與該函數(shù)有關(guān)的結(jié)論(性質(zhì))寫到黑板上.學(xué)生思考后,又補(bǔ)充一些結(jié)論,并從中選擇如下四條:①存在函數(shù),其圖像經(jīng)過(1,0)點(diǎn);②函數(shù)圖像與坐標(biāo)軸總有三個(gè)不同的交點(diǎn);③當(dāng)時(shí),不是y隨x的增大而增大就是y隨x的增大而減??;④若函數(shù)有最大值,則最大值必為正數(shù),若函數(shù)有最小值,則最小值必為負(fù)數(shù);教師:請(qǐng)你分別判斷四條結(jié)論的真假,并給出理由,最后簡(jiǎn)單寫出解決問題時(shí)所用的數(shù)學(xué)方法.【答案】①真,②假,③假,④真,理由和所用的數(shù)學(xué)方法見解析.【解析】試題分析:根據(jù)方程思想,特殊與一般思想,反證思想,分類思想對(duì)各結(jié)論進(jìn)行判斷.試題解析:①真,②假,③假,④:①將(1,0)代入,得,解得.∴存在函數(shù),其圖像經(jīng)過(1,0)點(diǎn).∴結(jié)論①為真.②舉反例如,當(dāng)時(shí),函數(shù)的圖象與坐標(biāo)軸只有兩個(gè)不同的交點(diǎn).∴結(jié)論②為假.③∵當(dāng)時(shí),二次函數(shù)(k是實(shí)數(shù))的對(duì)稱軸為,∴可舉反例如,當(dāng)時(shí),二次函數(shù)為,當(dāng)時(shí),y隨x的增大而減?。划?dāng)時(shí),y隨x的增大而增大.∴結(jié)論③為假.④∵當(dāng)時(shí),二次函數(shù)的最值為,∴當(dāng)時(shí),有最小值,最小值為負(fù);當(dāng)時(shí),有最大值,最大值為正.∴結(jié)論④為真.解決問題時(shí)所用的數(shù)學(xué)方法有方程思想,特殊與一般思想,反證思想,分類思想考點(diǎn):;;、特殊元素法、反證思想和分類思想的應(yīng)用.
點(diǎn)擊復(fù)制文檔內(nèi)容
語文相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1