freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

中考數(shù)學二次函數(shù)綜合經(jīng)典題含答案-資料下載頁

2025-03-31 07:34本頁面
  

【正文】 ,﹣x2+2x+2),根據(jù)PQ=OA=1且∠AOQ、∠PQN均為鈍角知△AOQ≌△PQN,延長PQ交直線y=﹣1于點H,證△OQM≌△QNH,根據(jù)對應邊相等建立關于x的方程,解之求得x的值從而進一步求解即可.【詳解】(1)∵點A的坐標為(﹣1,0),∴OA=1,∴OC=3OA,∴點C的坐標為(0,3),將A、C坐標代入y=ax2﹣2ax+c,得:,解得:,∴拋物線C1的解析式為y=﹣x2+2x+3=﹣(x﹣1)2+4,所以點G的坐標為(1,4);(2)設拋物線C2的解析式為y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,過點G′作G′D⊥x軸于點D,設BD′=m,∵△A′B′G′為等邊三角形,∴G′D=B′D=m,則點B′的坐標為(m+1,0),點G′的坐標為(1,m),將點B′、G′的坐標代入y=﹣(x﹣1)2+4﹣k,得:,解得:(舍),∴k=1;(3)設M(x,0),則P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),∴PQ=OA=1,∵∠AOQ、∠PQN均為鈍角,∴△AOQ≌△PQN,如圖2,延長PQ交直線y=﹣1于點H,則∠QHN=∠OMQ=90176。,又∵△AOQ≌△PQN,∴OQ=QN,∠AOQ=∠PQN,∴∠MOQ=∠HQN,∴△OQM≌△QNH(AAS),∴OM=QH,即x=﹣x2+2x+2+1,解得:x=(負值舍去),當x=時,HN=QM=﹣x2+2x+2=,點M(,0),∴點N坐標為(+,﹣1),即(,﹣1);或(﹣,﹣1),即(1,﹣1);如圖3,同理可得△OQM≌△PNH,∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1,解得:x=﹣1(舍)或x=4,當x=4時,點M的坐標為(4,0),HN=QM=﹣(﹣x2+2x+2)=6,∴點N的坐標為(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);綜上點M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【點睛】本題考查的是二次函數(shù)的綜合題,涉及到的知識有待定系數(shù)法、等邊三角形的性質、全等三角形的判定與性質等,熟練掌握待定系數(shù)法求函數(shù)解析式、等邊三角形的性質、全等三角形的判定與性質、運用分類討論思想是解題的關鍵.13.如圖,某足球運動員站在點O處練習射門,(點A在y軸上),足球的飛行高度y(單位:m)與飛行時間t(單位:s)之間滿足函數(shù)關系y=at2+5t+c,.(1)足球飛行的時間是多少時,足球離地面最高?最大高度是多少?(2)若足球飛行的水平距離x(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關系x=10t,如果該運動員正對球門射門時,離球門的水平距離為28m,他能否將球直接射入球門?【答案】(1)足球飛行的時間是s時,足球離地面最高,;(2)能.【解析】試題分析:(1)由題意得:函數(shù)y=at2+5t+c的圖象經(jīng)過(0,)(,),于是得到,求得拋物線的解析式為:y=﹣t2+5t+,當t=時,y最大=;(2)把x=28代入x=10t得t=,當t=,y=﹣+5+=<,于是得到他能將球直接射入球門.解:(1)由題意得:函數(shù)y=at2+5t+c的圖象經(jīng)過(0,)(,),∴,解得:,∴拋物線的解析式為:y=﹣t2+5t+,∴當t=時,y最大=;(2)把x=28代入x=10t得t=,∴當t=,y=﹣+5+=<,∴他能將球直接射入球門.考點:二次函數(shù)的應用.14.如圖,矩形OABC的兩邊在坐標軸上,點A的坐標為(10,0),拋物線y=ax2+bx+4過點B,C兩點,且與x軸的一個交點為D(﹣2,0),點P是線段CB上的動點,設CP=t(0<t<10).(1)請直接寫出B、C兩點的坐標及拋物線的解析式;(2)過點P作PE⊥BC,交拋物線于點E,連接BE,當t為何值時,∠PBE=∠OCD?(3)點Q是x軸上的動點,過點P作PM∥BQ,交CQ于點M,作PN∥CQ,交BQ于點N,當四邊形PMQN為正方形時,請求出t的值.【答案】(1)B(10,4),C(0,4),;(2)3;(3)或 .【解析】試題分析:(1)由拋物線的解析式可求得C點坐標,由矩形的性質可求得B點坐標,由B、D的坐標,利用待定系數(shù)法可求得拋物線解析式;(2)可設P(t,4),則可表示出E點坐標,從而可表示出PB、PE的長,由條件可證得△PBE∽△OCD,利用相似三角形的性質可得到關于t的方程,可求得t的值;(3)當四邊形PMQN為正方形時,則可證得△COQ∽△QAB,利用相似三角形的性質可求得CQ的長,在Rt△BCQ中可求得BQ、CQ,則可用t分別表示出PM和PN,可得到關于t的方程,可求得t的值.試題解析:解:(1)在y=ax2+bx+4中,令x=0可得y=4,∴C(0,4),∵四邊形OABC為矩形,且A(10,0),∴B(10,4),把B、D坐標代入拋物線解析式可得,解得,∴拋物線解析式為y=x2+x+4;(2)由題意可設P(t,4),則E(t,t2+t+4),∴PB=10﹣t,PE=t2+t+4﹣4=t2+t,∵∠BPE=∠COD=90176。,當∠PBE=∠OCD時,則△PBE∽△OCD,∴,即BP?OD=CO?PE,∴2(10﹣t)=4(t2+t),解得t=3或t=10(不合題意,舍去),∴當t=3時,∠PBE=∠OCD; 當∠PBE=∠CDO時,則△PBE∽△ODC,∴,即BP?OC=DO?PE,∴4(10﹣t)=2(t2+t),解得t=12或t=10(均不合題意,舍去)綜上所述∴當t=3時,∠PBE=∠OCD;(3)當四邊形PMQN為正方形時,則∠PMC=∠PNB=∠CQB=90176。,PM=PN,∴∠CQO+∠AQB=90176。,∵∠CQO+∠OCQ=90176。,∴∠OCQ=∠AQB,∴Rt△COQ∽Rt△QAB,∴,即OQ?AQ=CO?AB,設OQ=m,則AQ=10﹣m,∴m(10﹣m)=44,解得m=2或m=8,①當m=2時,CQ==,BQ==,∴sin∠BCQ==,sin∠CBQ==,∴PM=PC?sin∠PCQ=t,PN=PB?sin∠CBQ=(10﹣t),∴t =(10﹣t),解得t=,②當m=8時,同理可求得t=,∴當四邊形PMQN為正方形時,t的值為或.點睛:本題為二次函數(shù)的綜合應用,涉及矩形的性質、待定系數(shù)法、相似三角形的判定和性質、勾股定理、解直角三角形、方程思想等知識.在(1)中注意利用矩形的性質求得B點坐標是解題的關鍵,在(2)中證得△PBE∽△OCD是解題的關鍵,在(3)中利用Rt△COQ∽Rt△QAB求得CQ的長是解題的關鍵.本題考查知識點較多,綜合性較強,難度較大.15.如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1)兩點,并與直線y=kx交于A、B兩點,直線l過點E(0,﹣2)且平行于x軸,過A、B兩點分別作直線l的垂線,垂足分別為點M、N.(1)求此拋物線的解析式;(2)求證:AO=AM;(3)探究:①當k=0時,直線y=kx與x軸重合,求出此時的值;②試說明無論k取何值,的值都等于同一個常數(shù).【答案】解:(1)y=x2﹣1(2)詳見解析(3)詳見解析【解析】【分析】(1)把點C、D的坐標代入拋物線解析式求出a、c,即可得解。(2)根據(jù)拋物線解析式設出點A的坐標,然后求出AO、AM的長,即可得證。(3)①k=0時,求出AM、BN的長,然后代入計算即可得解;②設點A(x1,x12﹣1),B(x2,x22﹣1),然后表示出,再聯(lián)立拋物線與直線解析式,消掉未知數(shù)y得到關于x的一元二次方程,利用根與系數(shù)的關系表示出x1+x2,x1?2,并求出x12+x22,x12?x22,然后代入進行計算即可得解?!驹斀狻拷猓海?)∵拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1),∴,解得?!鄴佄锞€的解析式為y=x2﹣1。(2)證明:設點A的坐標為(m,m2﹣1),則?!咧本€l過點E(0,﹣2)且平行于x軸,∴點M的縱坐標為﹣2。∴AM=m2﹣1﹣(﹣2)=m2+1。∴AO=AM。(3)①k=0時,直線y=kx與x軸重合,點A、B在x軸上,∴AM=BN=0﹣(﹣2)=2,∴。②k取任何值時,設點A(x1,x12﹣1),B(x2,x22﹣1),則。聯(lián)立,消掉y得,x2﹣4kx﹣4=0,由根與系數(shù)的關系得,x1+x2=4k,x1?x2=﹣4,∴x12+x22=(x1+x2)2﹣2x1?x2=16k2+8,x12?x22=16?!??!酂o論k取何值,的值都等于同一個常數(shù)1。
點擊復制文檔內容
研究報告相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1