freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

全國(guó)備戰(zhàn)中考數(shù)學(xué)二次函數(shù)的綜合備戰(zhàn)中考真題匯總及答案解析-資料下載頁(yè)

2025-03-31 22:05本頁(yè)面
  

【正文】 據(jù)待定系數(shù)法即可解決問(wèn)題.(2)先求出拋物線y2的頂點(diǎn)坐標(biāo),再求出其解析式,利用方程組以及根與系數(shù)關(guān)系即可求出MN.(3)用類似(2)的方法,分別求出CD、EF即可解決問(wèn)題.試題解析:(1)∵二次函數(shù)過(guò)(﹣2,4),(﹣4,4)兩點(diǎn),∴,解得:,∴二次函數(shù)的解析式.(2)∵=,∴頂點(diǎn)坐標(biāo)(﹣3,),∵將沿x軸翻折,再向右平移2個(gè)單位,得到拋物線,∴拋物線的頂點(diǎn)坐標(biāo)(﹣1,),∴拋物線為,由,消去y整理得到,設(shè),是它的兩個(gè)根,則MN===;(3)由,消去y整理得到,設(shè)兩個(gè)根為,則CD===,由,消去y得到,設(shè)兩個(gè)根為,則EF===,∴EF=CD,EF∥CD,∴四邊形CEFD是平行四邊形.考點(diǎn):二次函數(shù)綜合題.14.如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(﹣6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點(diǎn)A的對(duì)應(yīng)點(diǎn)為D,拋物線y=ax2﹣10ax+c經(jīng)過(guò)點(diǎn)C,頂點(diǎn)M在直線BC上.(1)證明四邊形ABCD是菱形,并求點(diǎn)D的坐標(biāo);(2)求拋物線的對(duì)稱軸和函數(shù)表達(dá)式;(3)在拋物線上是否存在點(diǎn)P,使得△PBD與△PCD的面積相等?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.【答案】(1)詳見(jiàn)解析(2)(3)詳見(jiàn)解析【解析】【分析】(1)根據(jù)勾股定理,翻折的性質(zhì)可得AB=BD=CD=AC,根據(jù)菱形的判定和性質(zhì)可得點(diǎn)D的坐標(biāo).(2)根據(jù)對(duì)稱軸公式可得拋物線的對(duì)稱軸,設(shè)M的坐標(biāo)為(5,n),直線BC的解析式為y=kx+b,根據(jù)待定系數(shù)法可求M的坐標(biāo),再根據(jù)待定系數(shù)法求出拋物線的函數(shù)表達(dá)式.(3)分點(diǎn)P在CD的上面下方和點(diǎn)P在CD的上方兩種情況,根據(jù)等底等高的三角形面積相等可求點(diǎn)P的坐標(biāo):設(shè)P,當(dāng)點(diǎn)P在CD的上面下方,根據(jù)菱形的性質(zhì),知點(diǎn)P是AD與拋物線的交點(diǎn),由A,D的坐標(biāo)可由待定系數(shù)法求出AD的函數(shù)表達(dá)式:,二者聯(lián)立可得P1();當(dāng)點(diǎn)P在CD的上面上方,易知點(diǎn)P是∠D的外角平分線與拋物線的交點(diǎn),此時(shí),∠D的外角平分線與直線AD垂直,由相似可知∠D的外角平分線PD的斜率等于-2,可設(shè)其為,將D(10,8)代入可得PD的函數(shù)表達(dá)式:,與拋物線聯(lián)立可得P2(﹣5,38).【詳解】(1)證明:∵A(﹣6,0),B(4,0),C(0,8),∴AB=6+4=10,.∴AB=AC.由翻折可得,AB=BD,AC=CD.∴AB=BD=CD=AC.∴四邊形ABCD是菱形.∴CD∥AB.∵C(0,8),∴點(diǎn)D的坐標(biāo)是(10,8).(2)∵y=ax2﹣10ax+c,∴對(duì)稱軸為直線.設(shè)M的坐標(biāo)為(5,n),直線BC的解析式為y=kx+b,∴,解得.∴直線BC的解析式為y=﹣2x+8.∵點(diǎn)M在直線y=﹣2x+8上,∴n=﹣25+8=﹣2.∴M(5,-2).又∵拋物線y=ax2﹣10ax+c經(jīng)過(guò)點(diǎn)C和M,∴,解得.∴拋物線的函數(shù)表達(dá)式為.(3)存在.點(diǎn)P的坐標(biāo)為P1(),P2(﹣5,38)15.如圖,直線y=﹣3x+3與x軸、y軸分別交于A,B兩點(diǎn),拋物線y=﹣x2+bx+c與直線y=c分別交y軸的正半軸于點(diǎn)C和第一象限的點(diǎn)P,連接PB,得△PCB≌△BOA(O為坐標(biāo)原點(diǎn)).若拋物線與x軸正半軸交點(diǎn)為點(diǎn)F,設(shè)M是點(diǎn)C,F(xiàn)間拋物線上的一點(diǎn)(包括端點(diǎn)),其橫坐標(biāo)為m.(1)直接寫出點(diǎn)P的坐標(biāo)和拋物線的解析式;(2)當(dāng)m為何值時(shí),△MAB面積S取得最小值和最大值?請(qǐng)說(shuō)明理由;(3)求滿足∠MPO=∠POA的點(diǎn)M的坐標(biāo).【答案】(1)點(diǎn)P的坐標(biāo)為(3,4),拋物線的解析式為y=﹣x2+3x+4;(2)當(dāng)m=0時(shí),S取最小值,最小值為;當(dāng)m=3時(shí),S取最大值,最大值為5.(3)滿足∠MPO=∠POA的點(diǎn)M的坐標(biāo)為(0,4)或(,).【解析】【分析】(1)代入y=c可求出點(diǎn)C、P的坐標(biāo),利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A、B的坐標(biāo),再由△PCB≌△BOA即可得出b、c的值,進(jìn)而可得出點(diǎn)P的坐標(biāo)及拋物線的解析式;(2)利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出點(diǎn)F的坐標(biāo),過(guò)點(diǎn)M作ME∥y軸,交直線AB于點(diǎn)E,由點(diǎn)M的橫坐標(biāo)可得出點(diǎn)M、E的坐標(biāo),進(jìn)而可得出ME的長(zhǎng)度,再利用三角形的面積公式可找出S=﹣(m﹣3)2+5,由m的取值范圍結(jié)合二次函數(shù)的性質(zhì)即可求出S的最大值及最小值;(3)分兩種情況考慮:①當(dāng)點(diǎn)M在線段OP上方時(shí),由CP∥x軸利用平行線的性質(zhì)可得出:當(dāng)點(diǎn)C、M重合時(shí),∠MPO=∠POA,由此可找出點(diǎn)M的坐標(biāo);②當(dāng)點(diǎn)M在線段OP下方時(shí),在x正半軸取點(diǎn)D,連接DP,使得DO=DP,此時(shí)∠DPO=∠POA,設(shè)點(diǎn)D的坐標(biāo)為(n,0),則DO=n,DP=,由DO=DP可求出n的值,進(jìn)而可得出點(diǎn)D的坐標(biāo),由點(diǎn)P、D的坐標(biāo)利用待定系數(shù)法即可求出直線PD的解析式,再聯(lián)立直線PD及拋物線的解析式成方程組,通過(guò)解方程組求出點(diǎn)M的坐標(biāo).綜上此題得解.【詳解】(1)當(dāng)y=c時(shí),有c=﹣x2+bx+c,解得:x1=0,x2=b,∴點(diǎn)C的坐標(biāo)為(0,c),點(diǎn)P的坐標(biāo)為(b,c),∵直線y=﹣3x+3與x軸、y軸分別交于A、B兩點(diǎn),∴點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(0,3),∴OB=3,OA=1,BC=c﹣3,CP=b,∵△PCB≌△BOA,∴BC=OA,CP=OB,∴b=3,c=4,∴點(diǎn)P的坐標(biāo)為(3,4),拋物線的解析式為y=﹣x2+3x+4;(2)當(dāng)y=0時(shí),有﹣x2+3x+4=0,解得:x1=﹣1,x2=4,∴點(diǎn)F的坐標(biāo)為(4,0),過(guò)點(diǎn)M作ME∥y軸,交直線AB于點(diǎn)E,如圖1所示,∵點(diǎn)M的橫坐標(biāo)為m(0≤m≤4),∴點(diǎn)M的坐標(biāo)為(m,﹣m2+3m+4),點(diǎn)E的坐標(biāo)為(m,﹣3m+3),∴ME=﹣m2+3m+4﹣(﹣3m+3)=﹣m2+6m+1,∴S=OA?ME=﹣m2+3m+=﹣(m﹣3)2+5,∵﹣<0,0≤m≤4,∴當(dāng)m=0時(shí),S取最小值,最小值為;當(dāng)m=3時(shí),S取最大值,最大值為5;(3)①當(dāng)點(diǎn)M在線段OP上方時(shí),∵CP∥x軸,∴當(dāng)點(diǎn)C、M重合時(shí),∠MPO=∠POA,∴點(diǎn)M的坐標(biāo)為(0,4);②當(dāng)點(diǎn)M在線段OP下方時(shí),在x正半軸取點(diǎn)D,連接DP,使得DO=DP,此時(shí)∠DPO=∠POA,設(shè)點(diǎn)D的坐標(biāo)為(n,0),則DO=n,DP=,∴n2=(n﹣3)2+16,解得:n=,∴點(diǎn)D的坐標(biāo)為(,0),設(shè)直線PD的解析式為y=kx+a(k≠0),將P(3,4)、D(,0)代入y=kx+a,解得:,∴直線PD的解析式為y=﹣x+,聯(lián)立直線PD及拋物線的解析式成方程組,得:,解得:,.∴點(diǎn)M的坐標(biāo)為(,).綜上所述:滿足∠MPO=∠POA的點(diǎn)M的坐標(biāo)為(0,4)或(,).【點(diǎn)睛】本題考查了待定系數(shù)法求一次函數(shù)解析式、一次(二次)函數(shù)圖象上點(diǎn)的坐標(biāo)特征、全等三角形的性質(zhì)、二次函數(shù)的性質(zhì)、三角形的面積以及等腰三角形的性質(zhì),解題的關(guān)鍵是:(1)利用全等三角形的性質(zhì)求出b、c的值;(2)利用三角形的面積公式找出S=﹣(m﹣3)2+5;(3)分點(diǎn)M在線段OP上方和點(diǎn)M在線段OP下方兩種情況求出點(diǎn)M的坐標(biāo).
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1