freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

20xx-20xx中考數學二輪-二次函數-專項培優(yōu)附詳細答案-資料下載頁

2025-03-30 22:20本頁面
  

【正文】 B點關于y軸的對稱點B′,連接DB′交y軸于M,如圖1,則B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此時MB+MD的值最小,而BD的值不變,∴此時△BDM的周長最小,易得直線DB′的解析式為y=x+3,當x=0時,y=x+3=3,∴點M的坐標為(0,3);(3)存在.過點C作AC的垂線交拋物線于另一點P,如圖2,∵直線AC的解析式為y=3x+3,∴直線PC的解析式可設為y=﹣x+b,把C(0,3)代入得b=3,∴直線PC的解析式為y=﹣x+3,解方程組,解得或,則此時P點坐標為(,);過點A作AC的垂線交拋物線于另一點P,直線PC的解析式可設為y=﹣x+b,把A(﹣1,0)代入得+b=0,解得b=﹣,∴直線PC的解析式為y=﹣x﹣,解方程組,解得或,則此時P點坐標為(,﹣).綜上所述,符合條件的點P的坐標為(,)或(,﹣).點睛:本題考查了二次函數的綜合題:熟練掌握二次函數圖象上點的坐標特征和二次函數的性質;會利用待定系數法求函數解析式,理解兩直線垂直時一次項系數的關系,通過解方程組求把兩函數的交點坐標;理解坐標與圖形性質,會運用兩點之間線段最短解決最短路徑問題;會運用分類討論的思想解決數學問題.13.拋物線與x軸交于A,B兩點(OA<OB),與y軸交于點C.(1)求點A,B,C的坐標;(2)點P從點O出發(fā),以每秒2個單位長度的速度向點B運動,同時點E也從點O出發(fā),以每秒1個單位長度的速度向點C運動,設點P的運動時間為t秒(0<t<2).①過點E作x軸的平行線,與BC相交于點D(如圖所示),當t為何值時,的值最小,求出這個最小值并寫出此時點E,P的坐標;②在滿足①的條件下,拋物線的對稱軸上是否存在點F,使△EFP為直角三角形?若存在,請直接寫出點F的坐標;若不存在,請說明理由.【答案】(1)A(2,0),B(4,0),C(0,2);(2)①t=1時,有最小值1,此時OP=2,OE=1,∴E(0,1),P(2,0);②F(3,2),(3,7).【解析】試題分析:(1)在拋物線的解析式中,令y=0,令x=0,解方程即可得到結果;(2)①由題意得:OP=2t,OE=t,通過△CDE∽△CBO得到,即,求得有最小值1,即可求得結果;②存在,求得拋物線的對稱方程為x=3,設F(3,m),當△EFP為直角三角形時,①當∠EPF=90176。時,②當∠EFP=90176。時,③當∠PEF=90176。時,根據勾股定理列方程即可求得結果.試題解析:(1)在拋物線的解析式中,令y=0,即,解得:,∵OA<OB,∴A(2,0),B(4,0),在拋物線的解析式中,令x=0,得y=2,∴C(0,2);(2)①由題意得:OP=2t,OE=t,∵DE∥OB,∴△CDE∽△CBO,∴,即,∴DE=4﹣2t,∴===,∵0<t<2,始終為正數,且t=1時,有最大值1,∴t=1時,有最小值1,即t=1時,有最小值1,此時OP=2,OE=1,∴E(0,1),P(2,0);②存在,∵拋物線的對稱軸方程為x=3,設F(3,m),∴,=,=,當△EFP為直角三角形時,①當∠EPF=90176。時,即,解得:m=2,②當∠EFP=90176。時,即,解得;m=0或m=1,不合題意舍去,∴當∠EFP=90176。時,這種情況不存在,③當∠PEF=90176。時,即,解得:m=7,綜上所述,F(xiàn)(3,2),(3,7).考點:1.二次函數綜合題;2.動點型;3.最值問題;4.二次函數的最值;5.分類討論;6.壓軸題.14.如圖,在平面直角坐標系中,已知矩形ABCD的三個頂點B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點.(1)直接寫出點A的坐標,并求出拋物線的解析式;(2)動點P從點A出發(fā).沿線段AB向終點B運動,同時點Q從點C出發(fā),沿線段CD向終點D運動.速度均為每秒1個單位長度,⊥AB交AC于點E①過點E作EF⊥AD于點F,線段EG最長?②連接EQ.在點P、Q運動的過程中,判斷有幾個時刻使得△CEQ是等腰三角形?請直接寫出相應的t值.【答案】(1)點A的坐標為(4,8)將A (4,8)、C(8,0)兩點坐標分別代入y=ax2+bx得8=16a+4b0=64a+8b解得a=,b=4∴拋物線的解析式為:y=x2+4x(2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即=∴PE=AP=t.PB=8t.∴點E的坐標為(4+t,8t).∴點G的縱坐標為:(4+t)2+4(4+t)=t2+8.∴EG=t2+8(8t)=t2+t.∵<0,∴當t=4時,線段EG最長為2.②共有三個時刻:t1=, t2=,t3=.【解析】(1)根據題意即可得到點A的坐標,再由A、C兩點坐標根據待定系數法即可求得拋物線的解析式;(2)①在Rt△APE和Rt△ABC中,由tan∠PAE,即可表示出點E的坐標,從而得到點G的坐標,EG的長等于點G的縱坐標減去點E的縱坐標,得到一個函數關系式,根據函數關系式的特征即可求得結果;②考慮腰和底,分情況討論.15.如圖1,拋物線y=ax2+2x+c與x軸交于A(﹣4,0),B(1,0)兩點,過點B的直線y=kx+分別與y軸及拋物線交于點C,D.(1)求直線和拋物線的表達式;(2)動點P從點O出發(fā),在x軸的負半軸上以每秒1個單位長度的速度向左勻速運動,設運動時間為t秒,當t為何值時,△PDC為直角三角形?請直接寫出所有滿足條件的t的值;(3)如圖2,將直線BD沿y軸向下平移4個單位后,與x軸,y軸分別交于E,F(xiàn)兩點,在拋物線的對稱軸上是否存在點M,在直線EF上是否存在點N,使DM+MN的值最小?若存在,求出其最小值及點M,N的坐標;若不存在,請說明理由.【答案】(1)拋物線解析式為:y=,BD解析式為y=﹣;(2)t的值為、.(3)N點坐標為(﹣2,﹣2),M點坐標為(﹣,﹣),. 【解析】分析:(1)利用待定系數法求解可得;(2)先求得點D的坐標,過點D分別作DE⊥x軸、DF⊥y軸,分P1D⊥P1C、P2D⊥DC、P3C⊥DC三種情況,利用相似三角形的性質逐一求解可得;(3)通過作對稱點,將折線轉化成兩點間距離,應用兩點之間線段最短.詳解:(1)把A(﹣4,0),B(1,0)代入y=ax2+2x+c,得,解得:,∴拋物線解析式為:y=,∵過點B的直線y=kx+,∴代入(1,0),得:k=﹣,∴BD解析式為y=﹣;(2)由得交點坐標為D(﹣5,4),如圖1,過D作DE⊥x軸于點E,作DF⊥y軸于點F,當P1D⊥P1C時,△P1DC為直角三角形,則△DEP1∽△P1OC,∴=,即=,解得t=,當P2D⊥DC于點D時,△P2DC為直角三角形由△P2DB∽△DEB得=,即=,解得:t=;當P3C⊥DC時,△DFC∽△COP3,∴=,即=,解得:t=,∴t的值為、.(3)由已知直線EF解析式為:y=﹣x﹣,在拋物線上取點D的對稱點D′,過點D′作D′N⊥EF于點N,交拋物線對稱軸于點M過點N作NH⊥DD′于點H,此時,DM+MN=D′N最小.則△EOF∽△NHD′設點N坐標為(a,﹣),∴=,即=,解得:a=﹣2,則N點坐標為(﹣2,﹣2),求得直線ND′的解析式為y=x+1,當x=﹣時,y=﹣,∴M點坐標為(﹣,﹣),此時,DM+MN的值最小為==2.點睛:本題是二次函數和幾何問題綜合題,應用了二次函數性質以及轉化的數學思想、分類討論思想.解題時注意數形結合.
點擊復制文檔內容
醫(yī)療健康相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1