freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學二次函數(shù)(大題培優(yōu))及答案-資料下載頁

2025-04-02 22:04本頁面
  

【正文】 可解決最值問題.詳解:(1)將A(1,0)、B(3,0)代入y=ax2+bx+3,得:,解得:,∴拋物線的表達式為y=x2+2x+3.(2)(I)當點P的橫坐標為時,點Q的橫坐標為,∴此時點P的坐標為(,),點Q的坐標為(,).設直線PQ的表達式為y=mx+n,將P(,)、Q(,)代入y=mx+n,得:,解得:,∴直線PQ的表達式為y=x+.如圖②,過點D作DE∥y軸交直線PQ于點E,設點D的坐標為(x,x2+2x+3),則點E的坐標為(x,x+),∴DE=x2+2x+3(x+)=x2+3x+,∴S△DPQ=DE?(xQxP)=2x2+6x+=2(x)2+8.∵2<0,∴當x=時,△DPQ的面積取最大值,最大值為8,此時點D的坐標為(,).(II)假設存在,設點P的橫坐標為t,則點Q的橫坐標為4+t,∴點P的坐標為(t,t2+2t+3),點Q的坐標為(4+t,(4+t)2+2(4+t)+3),利用待定系數(shù)法易知,直線PQ的表達式為y=2(t+1)x+t2+4t+3.設點D的坐標為(x,x2+2x+3),則點E的坐標為(x,2(t+1)x+t2+4t+3),∴DE=x2+2x+3[2(t+1)x+t2+4t+3]=x2+2(t+2)xt24t,∴S△DPQ=DE?(xQxP)=2x2+4(t+2)x2t28t=2[x(t+2)]2+8.∵2<0,∴當x=t+2時,△DPQ的面積取最大值,最大值為8.∴假設成立,即直尺在平移過程中,△DPQ面積有最大值,面積的最大值為8.點睛:本題考查了待定系數(shù)法求二次(一次)函數(shù)解析式、二次(一次)函數(shù)圖象上點的坐標特征、三角形的面積以及二次函數(shù)的最值,解題的關(guān)鍵是:(1)根據(jù)點的坐標,利用待定系數(shù)法求出二次函數(shù)表達式;(2)(I)利用三角形的面積公式找出S△DPQ=2x2+6x+;(II)利用三角形的面積公式找出S△DPQ=2x2+4(t+2)x2t28t.14.如圖1,已知一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A、B兩點,拋物線過A、B兩點,且與x軸交于另一點C.(1)求b、c的值;(2)如圖1,點D為AC的中點,點E在線段BD上,且BE=2ED,連接CE并延長交拋物線于點M,求點M的坐標;(3)將直線AB繞點A按逆時針方向旋轉(zhuǎn)15176。后交y軸于點G,連接CG,如圖2,P為△ACG內(nèi)以點,連接PA、PC、PG,分別以AP、AG為邊,在他們的左側(cè)作等邊△APR,等邊△AGQ,連接QR①求證:PG=RQ;②求PA+PC+PG的最小值,并求出當PA+PC+PG取得最小值時點P的坐標.【答案】(1)b=﹣2,c=3;(2)M(,);(3)①證明見解析;②PA+PC+PG的最小值為,此時點P的坐標(﹣,).【解析】試題分析:(1)把A(﹣3,0),B(0,3)代入拋物線即可解決問題.(2)首先求出A、C、D坐標,根據(jù)BE=2ED,求出點E坐標,求出直線CE,利用方程組求交點坐標M.(3)①欲證明PG=QR,只要證明△QAR≌△GAP即可.②當Q、R、P、C共線時,PA+PG+PC最小,作QN⊥OA于N,AM⊥QC于M,PK⊥OA于K,由sin∠ACM==求出AM,CM,利用等邊三角形性質(zhì)求出AP、PM、PC,由此即可解決問題.試題解析:(1)∵一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A、B兩點,∴A(﹣3,0),B(0,3),∵拋物線過A、B兩點,∴,解得:,∴b=﹣2,c=3.(2),對于拋物線,令y=0,則,解得x=﹣3或1,∴點C坐標(1,0),∵AD=DC=2,∴點D坐標(﹣1,0),∵BE=2ED,∴點E坐標(,1),設直線CE為y=kx+b,把E、C代入得到:,解得:,∴直線CE為,由,解得或,∴點M坐標(,).(3)①∵△AGQ,△APR是等邊三角形,∴AP=AR,AQ=AG,∠QAC=∠RAP=60176。,∴∠QAR=∠GAP,在△QAR和△GAP中,∵AQ=AG,∠QAR=∠GAP,AR=AP,∴△QAR≌△GAP,∴QR=PG.②如圖3中,∵PA+PB+PC=QR+PR+PC=QC,∴當Q、R、P、C共線時,PA+PG+PC最小,作QN⊥OA于N,AM⊥QC于M,PK⊥OA于K.∵∠GAO=60176。,AO=3,∴AG=QG=AQ=6,∠AGO=30176。,∵∠QGA=60176。,∴∠QGO=90176。,∴點Q坐標(﹣6,),在RT△QCN中,QN=,CN=7,∠QNC=90176。,∴QC==,∵sin∠ACM==,∴AM=,∵△APR是等邊三角形,∴∠APM=60176。,∵PM=PR,cos30176。=,∴AP=,PM=RM=,∴MC==,∴PC=CM﹣PM=,∵,∴CK=,PK=,∴OK=CK﹣CO=,∴點P坐標(﹣,),∴PA+PC+PG的最小值為,此時點P的坐標(﹣,).考點:二次函數(shù)綜合題;旋轉(zhuǎn)的性質(zhì);最值問題;壓軸題.15.如圖,矩形OABC的兩邊在坐標軸上,點A的坐標為(10,0),拋物線y=ax2+bx+4過點B,C兩點,且與x軸的一個交點為D(﹣2,0),點P是線段CB上的動點,設CP=t(0<t<10).(1)請直接寫出B、C兩點的坐標及拋物線的解析式;(2)過點P作PE⊥BC,交拋物線于點E,連接BE,當t為何值時,∠PBE=∠OCD?(3)點Q是x軸上的動點,過點P作PM∥BQ,交CQ于點M,作PN∥CQ,交BQ于點N,當四邊形PMQN為正方形時,請求出t的值.【答案】(1)B(10,4),C(0,4),;(2)3;(3)或 .【解析】試題分析:(1)由拋物線的解析式可求得C點坐標,由矩形的性質(zhì)可求得B點坐標,由B、D的坐標,利用待定系數(shù)法可求得拋物線解析式;(2)可設P(t,4),則可表示出E點坐標,從而可表示出PB、PE的長,由條件可證得△PBE∽△OCD,利用相似三角形的性質(zhì)可得到關(guān)于t的方程,可求得t的值;(3)當四邊形PMQN為正方形時,則可證得△COQ∽△QAB,利用相似三角形的性質(zhì)可求得CQ的長,在Rt△BCQ中可求得BQ、CQ,則可用t分別表示出PM和PN,可得到關(guān)于t的方程,可求得t的值.試題解析:解:(1)在y=ax2+bx+4中,令x=0可得y=4,∴C(0,4),∵四邊形OABC為矩形,且A(10,0),∴B(10,4),把B、D坐標代入拋物線解析式可得,解得,∴拋物線解析式為y=x2+x+4;(2)由題意可設P(t,4),則E(t,t2+t+4),∴PB=10﹣t,PE=t2+t+4﹣4=t2+t,∵∠BPE=∠COD=90176。,當∠PBE=∠OCD時,則△PBE∽△OCD,∴,即BP?OD=CO?PE,∴2(10﹣t)=4(t2+t),解得t=3或t=10(不合題意,舍去),∴當t=3時,∠PBE=∠OCD; 當∠PBE=∠CDO時,則△PBE∽△ODC,∴,即BP?OC=DO?PE,∴4(10﹣t)=2(t2+t),解得t=12或t=10(均不合題意,舍去)綜上所述∴當t=3時,∠PBE=∠OCD;(3)當四邊形PMQN為正方形時,則∠PMC=∠PNB=∠CQB=90176。,PM=PN,∴∠CQO+∠AQB=90176。,∵∠CQO+∠OCQ=90176。,∴∠OCQ=∠AQB,∴Rt△COQ∽Rt△QAB,∴,即OQ?AQ=CO?AB,設OQ=m,則AQ=10﹣m,∴m(10﹣m)=44,解得m=2或m=8,①當m=2時,CQ==,BQ==,∴sin∠BCQ==,sin∠CBQ==,∴PM=PC?sin∠PCQ=t,PN=PB?sin∠CBQ=(10﹣t),∴t =(10﹣t),解得t=,②當m=8時,同理可求得t=,∴當四邊形PMQN為正方形時,t的值為或.點睛:本題為二次函數(shù)的綜合應用,涉及矩形的性質(zhì)、待定系數(shù)法、相似三角形的判定和性質(zhì)、勾股定理、解直角三角形、方程思想等知識.在(1)中注意利用矩形的性質(zhì)求得B點坐標是解題的關(guān)鍵,在(2)中證得△PBE∽△OCD是解題的關(guān)鍵,在(3)中利用Rt△COQ∽Rt△QAB求得CQ的長是解題的關(guān)鍵.本題考查知識點較多,綜合性較強,難度較大.
點擊復制文檔內(nèi)容
法律信息相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1