【總結(jié)】高中數(shù)學選修2----2知識點第一章導(dǎo)數(shù)及其應(yīng)用一.導(dǎo)數(shù)概念的引入1.導(dǎo)數(shù)的物理意義:瞬時速率。一般的,函數(shù)在處的瞬時變化率是,我們稱它為函數(shù)在處的導(dǎo)數(shù),記作或,即=2.導(dǎo)數(shù)的幾何意義:,我們可以看出當點趨近于時,直線與曲線相切。容易知道,割線的斜率是,當點趨近于時,函數(shù)在處的導(dǎo)數(shù)就是切線PT的斜率k,即3.導(dǎo)函數(shù):當x變化時,便是x的一個函數(shù),我們
2024-08-14 19:28
【總結(jié)】高中數(shù)學高考綜合復(fù)習專題三十八導(dǎo)數(shù)及其應(yīng)用 一、知識網(wǎng)絡(luò) 二、高考考點 1、導(dǎo)數(shù)定義的認知與應(yīng)用; 2、求導(dǎo)公式與運算法則的運用; 3、導(dǎo)數(shù)的幾何意義; 4、導(dǎo)數(shù)在研究函數(shù)單調(diào)性上的應(yīng)用; 5、導(dǎo)數(shù)在尋求函數(shù)的極值或最值的應(yīng)用; 6、導(dǎo)數(shù)在解決實際問題中的應(yīng)用?! ∪⒅R要點 ?。ㄒ唬?dǎo)數(shù) 1、導(dǎo)數(shù)的概念 ?。?)導(dǎo)數(shù)的定
2024-08-14 18:24
【總結(jié)】 高中數(shù)學函數(shù)學生常見問題以及函數(shù)常見題型、解法指導(dǎo)一、學生常見問題:(一)、認知層面的問題:這個問題是在高一學習函數(shù)時就一直在困擾學生的問題。我們要了解高一學生在學習數(shù)學時產(chǎn)生困難的原因,首先要了解學生的數(shù)學認知結(jié)構(gòu)。即學生在對數(shù)學對象、數(shù)學知識和數(shù)學經(jīng)驗感知和理解的基礎(chǔ)上形成的一種心理結(jié)構(gòu)。通俗地說:數(shù)學認知結(jié)構(gòu)就是人們按照自己的經(jīng)驗與理解,根據(jù)自己的感知、記憶、思維的特點,
2024-08-14 18:06
【總結(jié)】第六講立體幾何新題型【考點透視】(A),對于異面直線的距離,、直線和平面所成的角、、二面角的平面角、兩個平行平面間的距離的概念.(B)版.①理解空間向量的概念,掌握空間向量的加法、減法和數(shù)乘.②了解空間向量的基本定理,理解空間向量坐標的概念,掌握空間向量的坐標運算.③掌握空間向量的數(shù)量積的定義及其性質(zhì),掌握用直角坐標計算空間向量數(shù)量積公式.④理解直線的方向向量
2024-08-14 18:17
【總結(jié)】數(shù)列題型一:求值類的計算題(多關(guān)于等差等比數(shù)列) A)根據(jù)基本量求解(方程的思想) 1、已知為等差數(shù)列的前項和,,求; 2、等差數(shù)列中,且成等比數(shù)列,求數(shù)列前20項的和.3、設(shè)是公比為正數(shù)的等比數(shù)列,若,求數(shù)列前7項的和. 4、已知四個實數(shù),前三個數(shù)成等差數(shù)列,后三個數(shù)成等比數(shù)列,首末兩數(shù)之和為,中間兩數(shù)之和為,求這四個數(shù). B)根據(jù)數(shù)列的性質(zhì)求解 1、已知為等
2024-08-17 19:22
【總結(jié)】解析幾何題型求參數(shù)的值是高考題中的常見題型之一,其解法為從曲線的性質(zhì)入手,構(gòu)造方程解之.例1.若拋物線的焦點與橢圓的右焦點重合,則的值為()A.B.C.D.考查意圖:本題主要考查拋物線、橢圓的標準方程和拋物線、橢圓的基本幾何性質(zhì).解答過程:橢圓的右焦點為(2,0),所以拋物線的焦點為(2,0),則
2024-08-14 16:59
【總結(jié)】離心率的五種求法離心率的五種求法橢圓的離心率,雙曲線的離心率,拋物線的離心率.一、直接求出、,求解已知圓錐曲線的標準方程或、易求時,可利用率心率公式來解決。例1:已知雙曲線()的一條準線與拋物線的準線重合,則該雙曲線的離心率為()A.B.C.D.解:拋物線的準線是,即雙曲線的
2025-04-04 05:14
【總結(jié)】生命是永恒不斷的創(chuàng)造,因為在它內(nèi)部蘊含著過剩的精力,它不斷流溢,越出時間和空間的界限,它不停地追求,以形形色色的自我表現(xiàn)的形式表現(xiàn)出來。--泰戈爾導(dǎo)數(shù)題型分析及解題方法一、考試內(nèi)容導(dǎo)數(shù)的概念,導(dǎo)數(shù)的幾何意義,幾種常見函數(shù)的導(dǎo)數(shù);兩個函數(shù)的和、差、基本導(dǎo)數(shù)公式,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,函數(shù)的最大值和最小值。二、熱點
2025-01-08 19:29
【總結(jié)】2013屆高三數(shù)學一輪鞏固與練習----導(dǎo)數(shù)及其應(yīng)用1.設(shè)正弦函數(shù)y=sinx在x=0和x=附近的平均變化率為k1,k2,則k1,k2的大小關(guān)系為( )A.k1k2B.k1k2C.k1=k2D.不確定解析:選A.∵y=sinx,∴y′=(sinx)′=cosx,k1=cos0=1,
2024-08-14 19:26
【總結(jié)】《數(shù)學》必會基礎(chǔ)題型——《導(dǎo)數(shù)》【知識點】:::(整體代換)例如:已知,求。解::位移的導(dǎo)數(shù)是速度,速度的導(dǎo)數(shù)是加速度。:導(dǎo)數(shù)就是切線斜率。、極值、最值、零點個數(shù):對于給定區(qū)間內(nèi),若,則在內(nèi)是增函數(shù);若,則在內(nèi)是減函數(shù)?!绢}型一
2025-04-04 05:09
【總結(jié)】導(dǎo)數(shù)考試內(nèi)容:導(dǎo)數(shù)的背影.導(dǎo)數(shù)的概念.多項式函數(shù)的導(dǎo)數(shù).利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值.函數(shù)的最大值和最小值.考試要求:(1)了解導(dǎo)數(shù)概念的某些實際背景.(2)理解導(dǎo)數(shù)的幾何意義.(3)掌握函數(shù),y=c(c為常數(shù))、y=xn(n∈N+)的導(dǎo)數(shù)公式,會求多項式函數(shù)的導(dǎo)數(shù).(4)理解極大值、極小值、最大值、最小值的概念,并會用導(dǎo)數(shù)求多項式函數(shù)的單調(diào)區(qū)間、極大值、極小值及閉區(qū)間上的最
2024-08-17 19:51
【總結(jié)】導(dǎo)數(shù)考試內(nèi)容:導(dǎo)數(shù)的背影.導(dǎo)數(shù)的概念.多項式函數(shù)的導(dǎo)數(shù).利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值.函數(shù)的最大值和最小值.考試要求:(1)了解導(dǎo)數(shù)概念的某些實際背景.(2)理解導(dǎo)數(shù)的幾何意義.(3)掌握函數(shù),y=c(c為常數(shù))、y=xn(n∈N+)的導(dǎo)數(shù)公式,會求多項式函數(shù)的導(dǎo)數(shù).(4)理解極大值、極小值、最大值、最小值的概念,并會用導(dǎo)數(shù)求多項式函數(shù)的單調(diào)區(qū)間、極大值、極小值及閉區(qū)間上
2025-04-04 05:08
【總結(jié)】第7講概率與統(tǒng)計問題的題型與方法(4課時)一、考試內(nèi)容離散型隨機變量的分布列,離散型隨機變量的期望值和平方差,抽樣方法,總體分布的估計,正態(tài)分布,總體特征數(shù)的估計,線性回歸。二、考試要求⑴了解隨機變量、離散型隨機變量的意義,會求出某些簡單的離散型隨機變量的分布列。⑵了解離散型隨機變量的期望值、方差的意義,會根據(jù)離散型隨機變量的分布列求出期望值、方差。
【總結(jié)】高中數(shù)學必修4三角與向量專題同名三角函數(shù)之間的關(guān)系:例1.已知,并且是第二象限角,求.,求(1)(2).練習:化簡思考:1.已知,求2、已知求誘導(dǎo)公式:例1.化簡:練習.已知,計算:(1);(2);(3);(4).例2.化簡:,,求的值三角函數(shù):例1.對于函數(shù)y=3s
2025-04-04 04:55
【總結(jié)】立體幾何重要定理:1)直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這兩條直線垂直于這個平面.2)直線和平面平行性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行.3)平面平行判定定理:如果一個平面內(nèi)有兩條
2024-12-17 02:37