freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理教學(xué)設(shè)計(jì)(編輯修改稿)

2024-11-11 12:48 本頁面
 

【文章內(nèi)容簡介】 【設(shè)計(jì)意圖】引導(dǎo)學(xué)生的思維逐步形成“情境思考”——“提出問題”——“研究特例”——“歸納猜想”——“實(shí)驗(yàn)探究”——“理論探究”——“解決問題”的思維方式,進(jìn)而形成解決問題的能力。正弦定理的探究(1)實(shí)驗(yàn)探究正弦定理師:借助于電腦與多媒體,利用《幾何畫板》軟件,演示正弦定理教學(xué)課件。邊演示邊引導(dǎo)學(xué)生觀察三角形形狀的變化與三個(gè)比值的變化情況。結(jié)論:asinA=bsinB=csinC對于任意三角形都成立?!驹O(shè)計(jì)意圖】通過《幾何畫板》軟件的演示,使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。師:利用上述結(jié)論解決情境問題中圖3的情形,并檢驗(yàn)與生5的計(jì)算結(jié)果是否一致。生10:(通過計(jì)算)與生5的結(jié)果相同。師:如果上述結(jié)論成立,則在三角形中利用該結(jié)論解決“已知兩邊和其中一邊的對角,求另一邊的對角和第三邊?!钡膯栴}就簡單多了?!驹O(shè)計(jì)意圖】與情境設(shè)置中的問題相呼應(yīng),間接給出了正弦定理的簡單應(yīng)用,并強(qiáng)化學(xué)生學(xué)習(xí)探究、應(yīng)用正弦定理的心理需求。(2)點(diǎn)明課題:正弦定理(3)正弦定理的理論探究師:既然是定理,則需要證明,請同學(xué)們與小組共同探究正弦定理的證明。探究方案:直角三角形——已驗(yàn)證; 銳角三角形——課堂探究; 鈍角三角形——課后證明。【設(shè)計(jì)意圖】通過分析,確定探究方案。課堂只讓學(xué)生探究銳角三角形的情形,有助于在不影響探究進(jìn)程的同時(shí),為探究銳角三角形的情形騰出更多的時(shí)間。鈍角三角形的情形以課后證明的形式,可使學(xué)生鞏固課堂的成果。師:請你(生11)到講臺上,講講你的證明思路?生11:(走上講臺),設(shè)法將問題轉(zhuǎn)化成直角三角形中的問題進(jìn)行解決。通過作三角形的高,與生5的辦法一樣,如圖5作BC邊上的高AD,則AD=csinB=bsinC,所以bsinB=csinCAcabB,同理可得asinA=bsinBCD圖 5 銳角三角形師:因?yàn)橐C明的是一個(gè)等式,所以應(yīng)從銳角三角形的條件出發(fā),構(gòu)造等量關(guān)系從而達(dá)到證明的目的。注意: csinB=bsinC表示的幾何意義是三角形同一邊上的高不變。這是一個(gè)簡捷的證明方法!【設(shè)計(jì)意圖】點(diǎn)明此證法的實(shí)質(zhì)是找到一個(gè)可以作為證明基礎(chǔ)的等量關(guān)系,為后續(xù)兩種方法的提出做鋪墊,同時(shí)適時(shí)對學(xué)生作出合情的評價(jià)。師:在三角形中還有哪些可以作為證明基礎(chǔ)的等量關(guān)系呢? 學(xué)生七嘴八舌地說出一些等量關(guān)系,經(jīng)討論后確定如下一些與直角三角形有關(guān)的等量關(guān)系可能有利用價(jià)值:①三角形的面積不變;②三角形外接圓直徑不變。在教師的建議下,學(xué)生分別利用這兩種關(guān)系作為基礎(chǔ)又得出了如下兩種證法:證法二:如圖6,設(shè)AD、BE、CF分別是DABC的三條高。則有AD=bsin208。ACB,BE=csin208。BACCF=asin208。ABCAFcaD圖 6 EbCB。bcsin208。BAC=c12casin208。ABC12\SDABC=\a12absin208。ACB==bsin208。ABC=Asin208。BACsin208。ACBcBa證法三:如圖7,設(shè)BD=2r是DABC外接圓的直徑,則208。BAD=90176。,208。ACB=208。ADB=BD=2rsin208。ADBab==2r同理可證:sin208。BACsin208。ABC\sin208。ACB=\asin208。BAC=bsin208。ABC=csin208。ACBccbDC圖 7 三角形外接圓【設(shè)計(jì)意圖】在證明正弦定理的同時(shí),將兩邊及其夾角的三角形面積公式 及asinA=bsinB=csinC=2r一并牽出,使知識的產(chǎn)生自然合理。uuuruuur、BC、CA間有什么關(guān)系? 師:前面我們學(xué)習(xí)了平面向量,能否運(yùn)用向量的方法證明呢?uuur師:任意DABC中,三個(gè)向量ABuuuruuuruuurr生12:AB+BC+CA=0uuuruuuruuurr師:正弦定理體現(xiàn)的是三角形中邊角間的數(shù)量關(guān)系,由AB+BC+CA=0轉(zhuǎn)化成數(shù)量關(guān)系?uuuruuuruuurruuuruuuruuurr師:在AB+BC+CA兩邊同乘以向量j,有(AB+BC+CA)j=0,這里的向量rrj可否任意?又如何選擇向量j?r生14:因?yàn)閮蓚€(gè)垂直向量的數(shù)量積為0,可考慮讓向量j與三個(gè)向量中的一uuur個(gè)向量(如向量BC)垂直,而且使三個(gè)項(xiàng)的關(guān)系式轉(zhuǎn)化成兩個(gè)項(xiàng)的關(guān)系式。生13:利用向量的數(shù)量積運(yùn)算可將向量關(guān)系轉(zhuǎn)化成數(shù)量關(guān)系。師:還是先研究銳角三角形的情形,按以上思路,請大家具體試一下,看還有什么問題?教師參與學(xué)生的小組研究,同時(shí)引導(dǎo)學(xué)生注意兩個(gè)向量的夾角,最后讓學(xué)生通過小組代表作完成了如下證明。uuurr證法四:如圖8,設(shè)非零向量j與向量BC垂直。uuuruuuruuurr因?yàn)锳B+BC+CA=0,uuuruuuruuurr所以(AB+BC+CA)j=0 uuurruuurr即ABj+CAj=0 Buuurruuurruuurruuurr|AB||j|cosAB,j+|CA||j|cosCA,j=0 rrc|j|cos(90176。+B)+b|j|cos(90176。C)=0 rrc|j|(sinB)+b|j|sinC=0AcrjbaC圖 8 向量所以bsinB=csinC,同理可得asinA=bsinB師:能否簡化證法四的過程?(留有一定的時(shí)間給學(xué)生思考)uuurruuurr師:ABj+CAj=0有什么幾何意義?uuurruuurruuurruuurr生15:把ABj+CAj=0移項(xiàng)可得CAj=BAjuuurruuur義可知CA與BA在j方向上的投影相等。,由向量數(shù)量積的幾何意生16:我還有一種證法uuuruuur證法五:如圖9,作AD^BC,則AB與AC在uuuruuuruuuruuuruuurAD方向上的投影相等,即ABAD=ACADuuuruuuruuuruuur\|AB||AD|cos(90176。B)=|AC||AD|cos(90176。C)C\csinB=bsin 師:請你到講臺來給大家講一講。(學(xué)生16上臺板書自己的證明方法。)AcBDabC圖 9 向量故bsinB=csinC,同理可得asinA=bsinB師:利用向量在邊上的高上的射影相等,證明了正弦定理,方法非常簡捷明了!【設(shè)計(jì)意圖】利用向量法來證明幾何問題,學(xué)生相對比較生疏,不容易馬上想出來,教師通過設(shè)計(jì)一些遞進(jìn)式的問題給予適當(dāng)?shù)膯l(fā)引導(dǎo),將很難想到的方法合理分解,有利于學(xué)生理解接受。(四)小結(jié)師:本節(jié)課我們是從實(shí)際問題出發(fā),通過猜想、實(shí)驗(yàn),歸納等思維方法,最后發(fā)現(xiàn)了正弦定理,并從不同的角度證明了它。本節(jié)課,我們研究問題的突出特點(diǎn)是從特殊到一般,利用了幾何畫板進(jìn)行數(shù)學(xué)實(shí)驗(yàn)。我們不僅收獲著結(jié)論,而且整個(gè)探索過程我們也掌握了研究問題的一般方法。(五)作業(yè)回顧本節(jié)課的整個(gè)研究過程,體會知識的發(fā)生過程;思考:證法五與證法一有何聯(lián)系?思考:能否借助向量的坐標(biāo)的方法證明正弦定理?當(dāng)三角形為鈍角三角形時(shí),證明正弦定理?!驹O(shè)計(jì)意圖】為保證學(xué)生有充足的時(shí)間來完成觀察、歸納、猜想、探究和證明,小結(jié)的時(shí)間花得少且比較簡單,這將在下一節(jié)課進(jìn)行完善,因此作業(yè)的布置也為下節(jié)課做一些必要的準(zhǔn)備。七、教學(xué)反思為了使學(xué)生真正成為提出問題和解決問題的主體,成為知識的“發(fā)現(xiàn)者”和“創(chuàng)造者”,使教學(xué)過程成為學(xué)生主動獲取知識、發(fā)展能力、體驗(yàn)數(shù)學(xué)的過程。我想到了“情境——問題”教學(xué)模式,即構(gòu)建一個(gè)以情境為基礎(chǔ),提出問題與解決問題相互引發(fā)攜手并進(jìn)的“情境——問題”學(xué)習(xí)鏈,并根據(jù)上述精神,結(jié)合教學(xué)內(nèi)容,具體做出了如下設(shè)計(jì):①創(chuàng)設(shè)一個(gè)現(xiàn)實(shí)問題情境作為提出問題的背景(注:該情境源于《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書數(shù)學(xué)(必修4)》(人教版)
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1