freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理教案(編輯修改稿)

2025-10-06 07:29 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 即: 在直角三角形中也成立教師:那么這個(gè)等式在鈍角三角形中是否成立,我們又該如何驗(yàn)證呢?請(qǐng)大家思考。學(xué)生活動(dòng)二:驗(yàn)證教師(提示):要出現(xiàn)sinA、sinB的值必須把A、B放在直角三角形中即就是要作高(可利用誘導(dǎo)公式將在鈍角三角形中是否成立轉(zhuǎn)化為)學(xué)生:學(xué)生可分小組進(jìn)行完成,最終可由各小組組長(zhǎng)匯報(bào)本小組的思路和做法。(結(jié)論成立)教師:我們?cè)阡J角三角形中發(fā)現(xiàn)有這樣一個(gè)等式成立,接下來(lái),用類比的方法對(duì)它分別在直角三角形和鈍角三角形中進(jìn)行驗(yàn)證,結(jié)果發(fā)現(xiàn),這個(gè)等式對(duì)于任意的直角三角形和任意的鈍角三角形都成立,那么我們此時(shí)能否說(shuō):“這個(gè)等式對(duì)于任意的三角形都成立”呢? 學(xué)生:可以教師:這就是我們這節(jié)課要學(xué)習(xí)的《正弦定理》(引出課題)定理的證明教師:展示正弦定理的證明過程證明:(1)當(dāng)三角形是銳角三角形時(shí),過點(diǎn)A作BC邊上的高線,垂直記作D,過點(diǎn)B向AC作高,垂直記作E,如圖:同理可得:所以易得(2)當(dāng)三角形是直角三角形時(shí);在直角三角形ABC中:若 因?yàn)椋核裕汗剩杭矗海?)當(dāng)三角形是鈍角三角形時(shí)(角C為鈍角)過點(diǎn)A作BC邊上的高線,垂直記作D由三角形ABC的面積可得 即:故:所以,對(duì)于任意的三角形都有教師:這就是本節(jié)課我們學(xué)習(xí)的正弦定理(給出定理的內(nèi)容)(解釋定理的結(jié)構(gòu)特征)思考:正弦定理可以解決哪類問題呢? 學(xué)生:在一個(gè)等式中可以做到“知三求一” 定理的應(yīng)用教師:接下來(lái),讓我們來(lái)看看定理的應(yīng)用(回到剛開始的那個(gè)實(shí)際問題,用正弦定理解決)(板書步驟)成立。隨堂訓(xùn)練學(xué)生:獨(dú)立完成后匯報(bào)結(jié)果或快速搶答教師:上述幾道題目只是初步的展現(xiàn)了正弦定理的應(yīng)用,其實(shí)正弦定理的應(yīng)用相當(dāng)廣泛,那么它到底可以解決什么問題呢,這里我送大家四句話:“近測(cè)高塔遠(yuǎn)看山,量天度海只等閑;古有九章勾股法,今看三角正余弦.”以這四句話把正弦定理的廣泛應(yīng)用推向高潮)課堂小結(jié):知識(shí)方面:正弦定理:其他方面:過程與方法:發(fā)現(xiàn)推廣猜想驗(yàn)證證明(這是一種常用的科學(xué)研究問題的思路與方法,希望同學(xué)們?cè)诮窈蟮膶W(xué)習(xí)中一定要注意這樣的一個(gè)過程)數(shù)學(xué)思想:轉(zhuǎn)化與化歸、分類討論、從特殊到一般作業(yè)布置: ①書面作業(yè):P52②查找并閱讀“正弦定理”的其他證明方法(比如“面積法”、“向量法”等)③思考、探究:若將隨堂訓(xùn)練中的已知條件改為以下幾種情況,結(jié)果如何?板書設(shè)計(jì):定理:探索:證明:應(yīng)用:檢測(cè)評(píng)估:第三篇:正弦定理教案(最終版)解斜三角形——正弦定理學(xué)習(xí)目的: ,了解數(shù)學(xué)理論的發(fā)現(xiàn)發(fā)展過程;,能初步運(yùn)用正弦定理解斜三角形。學(xué)習(xí)重點(diǎn): 正弦定理的證明和解三角形 學(xué)習(xí)難點(diǎn): 正弦定理的證明 學(xué)習(xí)過程: 一.定理引入:提出問題:設(shè)點(diǎn)B在長(zhǎng)江岸邊,點(diǎn)A在對(duì)岸那邊,為了測(cè)量A、B兩點(diǎn)間的距離,你有何好辦法呢?(給你尺和量角器材)二、定理講解:正弦定理 在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等,即abc== sinAsinBsinC正弦定理可以解決三角形中兩類問題:①已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角,進(jìn)而可求其他的邊和角。②已知兩角和一邊,求另一角和其他邊。三、定理應(yīng)用:例1:在△ABC中,已知c=10, A=45176。 , C=30176。 ,:在△ABC中,已知a=16, b=163 , A=30176。 ,求B、C、:在△ABC中,已知a=4, b=42 , B=45176。 ,求A、講練結(jié)合法、任務(wù)驅(qū)動(dòng)法、自主探究法、小組合作學(xué)習(xí)法 情境教學(xué)法、講練結(jié)合法、任務(wù)驅(qū)動(dòng)法、自主探究法、小組合作學(xué)習(xí)法 課堂練習(xí):在△ABC中,已知b=6,c=23, B=45176。,解三角形。在△ABC中,已知a=4,b=46,A=60176。,求B。3在△ABC中,已知b=40,c=20, C=45176。,解三角形。課后練習(xí):一個(gè)三角形的兩個(gè)內(nèi)角分別為30176。和45176。,如果45176。角所對(duì)的邊長(zhǎng)為8,那么30176。角所對(duì)邊的長(zhǎng)為________________在△ABC中,b=3,c=33, B=30,求∠C。o,在△ABC中,已知a=4,b=10,A=30,求∠B。在△ABC中,已知b=4,c=8,B=30,求∠A,∠C和邊a。o,o,第四篇:正弦定理教案[定稿] 正弦定理和余弦定理 正弦定理從容說(shuō)課本章內(nèi)容是處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系有密切的聯(lián)系,與已知三角形的邊和角相等判定三角形全等的知識(shí)也有著密切的聯(lián)系.教科書在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問題“在任意三角形中有大邊對(duì)大角,、角的關(guān)系準(zhǔn)確量化的表示呢?”在引入余弦定理內(nèi)容時(shí),提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問題”.這樣,用聯(lián)系的觀點(diǎn),從新的角度看過去的問題,使學(xué)生對(duì)于過去的知識(shí)有了新的認(rèn)識(shí),同時(shí)使新知識(shí)建立在已有知識(shí)的堅(jiān)實(shí)基礎(chǔ)上,形成良好的知識(shí)結(jié)構(gòu).; .; .教具準(zhǔn)備直角三角板一個(gè)三維目標(biāo)一、知識(shí)與技能 ,掌握正弦定理的內(nèi)容及其證明方法; .二、過程與方法 ,共同探究在任意三角形中,邊與其對(duì)角的關(guān)系; 、推導(dǎo)、比較,由特殊到一般歸納出正弦定理; .三、情感態(tài)度與價(jià)值觀 ; ,通過三角函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來(lái)體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一.教學(xué)過程導(dǎo)入新課 師如右圖,固定△ABC的邊CB及∠B,使邊AC繞著頂點(diǎn)C轉(zhuǎn)動(dòng).師思考:∠C的大小與它的對(duì)邊AB的長(zhǎng)度之間有怎樣的數(shù)量關(guān)系?生顯然,邊AB的長(zhǎng)度隨著其對(duì)角∠C的大小的增大而增大.師能否用一個(gè)等式
點(diǎn)擊復(fù)制文檔內(nèi)容
范文總結(jié)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1