freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

完全平方公式教案2(編輯修改稿)

2024-11-04 22:29 本頁面
 

【文章內(nèi)容簡介】 5q2; (4)16-8xy+x2y2;(5)a2b2-4ab+4; (6)25a4-40a2b2+16b4。3。(1)m2n-2mn+1; (2)7am+1-14am+7am-1;4。(1) x -4x; (2)a5+a4+ a3。答案:1。(1)(a+4)2; (2)(1-2t)2;(3)(m-7) 2; (4)(y+12)2。2。(1)(5m-8) 2; (2)(2a+9) 2;(3)(2p-5q) 2; (4)(4-xy) 2;(5)(ab-2) 2; (6)(5a2-4b2) 2。3。(1)(mn-1) 2; (2)7am-1(a-1) 2。4。(1) x(x+4)(x-4); (2)14a3 (2a+1) 2。課堂教學(xué)設(shè)計(jì)說明1。利用完全平方公式進(jìn)行多項(xiàng)式的因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進(jìn)行的,因此在教學(xué)設(shè)計(jì)中,重點(diǎn)放在判斷一個(gè)多項(xiàng)式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問題,從中培養(yǎng)學(xué)生的思維品質(zhì)。2。本節(jié)課要求學(xué)生掌握完全平方公式的特點(diǎn)和靈活運(yùn)用公式把多項(xiàng)式進(jìn)行因式分解的方法。在教學(xué)設(shè)計(jì)中安排了形式多樣的課堂練習(xí),讓學(xué)生從不同側(cè)面理解完全平方公式的特點(diǎn)。例1和例2的講解可以在老師的引導(dǎo)下,師生共同分析和解答,使學(xué)生當(dāng)堂能夠掌握運(yùn)用平方公式進(jìn)行完全因式分解的方法。完全平方公式教案4教材分析1本節(jié)課的主題:通過一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過程。首先提出等號(hào)左邊的兩個(gè)相乘的多項(xiàng)式和等號(hào)右邊得出的三項(xiàng)有什么關(guān)系。通過學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的`檢驗(yàn),得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。學(xué)情分析在學(xué)習(xí)本課之前應(yīng)具備的基本知識(shí)和技能:①同類項(xiàng)的定義。②合并同類項(xiàng)法則③多項(xiàng)式乘以多項(xiàng)式法則。學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號(hào)的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。教學(xué)目標(biāo)(一)教學(xué)目標(biāo):經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號(hào)感和推力能力。會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡單的計(jì)算。(二)知識(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過程,認(rèn)識(shí)有理數(shù)、實(shí)數(shù)、代數(shù)式;掌握必要的運(yùn)算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、不等式、函數(shù)等進(jìn)行描述。(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價(jià)不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗(yàn)。(五)情感與態(tài)度:敢于面對數(shù)學(xué)活動(dòng)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。教學(xué)重點(diǎn)和難點(diǎn)重點(diǎn):能運(yùn)用完全平方公式進(jìn)行簡單的計(jì)算。難點(diǎn):會(huì)推導(dǎo)完全平方公式教學(xué)過程教學(xué)過程設(shè)計(jì)如下:〈一〉、提出問題[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,通過運(yùn)算下列四個(gè)小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系嗎?(2m+3n)2=_______________,(2m3n)2=______________,(2m3n)2=_______________,(2m+3n)2=_______________?!炊?、分析問題[學(xué)生回答]分組交流、討論(2m+3n)2= 4m2+12mn+9n2,(2m3n)2= 4m2+12mn+9n2,(2m3n)2= 4m212mn+9n2, (2m+3n)2= 4m212mn+9n2。(1)原式的特點(diǎn)。(2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。(3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。(4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。[學(xué)生回答]總結(jié)完全平方公式的語言描述:兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:(a+b)2=a2+2ab+b2;(ab)2=a22ab+b2.〈三〉、運(yùn)用公式,解決問題口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)(m+n)2=____________, (mn)2=_______________,(m+n)2=____________, (mn)2=______________,(a+3)2=______________, (c+5)2=______________,(7a)2=______________, ()2=______________.判斷:( )① (a2b)2= a22ab+b2( )② (2m+n)2= 2m2+4mn+n2( )③ (n3m)2= n26mn+9m2( )④ (5a+)2= 25a2+5ab+( )⑤ ()2= 5a25ab+( )⑥ (a2b)2=(a+2b)2( )⑦ (2a4b)2=(4a2b)2( )⑧ (5m+n)2=(n+5m)2一現(xiàn)身手① (x+y)2 =______________。② (yx)2 =_______________。③ (2x+3)2 =_____________。④ (3a2)2 =_______________。⑤ (2x+3y)2 =____________。⑥ (4x5y)2 =______________。⑦ (+n)2 =___________。⑧ ()2 =_____________.〈四〉、[學(xué)生小結(jié)]你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?(1)公式右邊共有3項(xiàng)。(2)兩個(gè)平方項(xiàng)符號(hào)永遠(yuǎn)為正。(3)中間項(xiàng)的符號(hào)由等號(hào)左邊的兩項(xiàng)符號(hào)是否相同決定。(4)中間項(xiàng)是等號(hào)左邊兩項(xiàng)乘積的2倍?!次濉怠⑻诫U(xiǎn)之旅(1)(3a+2b)2=________________________________(2)(72m) 2 =__________________________________(3)(+2n) 2=_______________________________(4)(3/5a1/2b) 2=________________________________(5)(mn+3) 2=__________________________________(6)() 2=_________________________________(7)(2xy23x2y) 2=_______________________________(8)(2n33m3) 2=________________________________板書設(shè)計(jì)完全平方公式兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(ab)2=a22ab+b2完全平方公式教案5運(yùn)用乘法公式計(jì)算:(l) (2)(3) (4)學(xué)生活動(dòng):采取比賽的方式把學(xué)生分成四組,每組完成一題,看哪一組完成得快而且準(zhǔn)確,每組各派一個(gè)學(xué)生板演本組題目.【教法說明】這樣做的目的是訓(xùn)練學(xué)生的快速反應(yīng)能力及綜合運(yùn)用知識(shí)的能力,同時(shí)也激發(fā)學(xué)生的學(xué)習(xí)興趣,活躍課堂氣氛.(四)總結(jié)、擴(kuò)展這節(jié)課我們學(xué)習(xí)了乘法公式中的完全平方公式.引導(dǎo)學(xué)生舉例說明公式的結(jié)構(gòu)特征,公式中字母含義和運(yùn)用公式時(shí)應(yīng)該注意的問題.八、布置作業(yè)完全平方公式教案6教學(xué)目標(biāo):經(jīng)歷探索完全平方公式的過程,并從完全平方公式的推導(dǎo)過程中,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達(dá)能力。體會(huì)公式的發(fā)現(xiàn)和推導(dǎo)過程,理解公式的本質(zhì),從不同的層次上理解完全平方公式,并會(huì)運(yùn)用公式進(jìn)行簡單的計(jì)算。了解完全平方公式的幾何背景,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識(shí)。在學(xué)習(xí)中使學(xué)生體會(huì)學(xué)習(xí)數(shù)學(xué)的樂趣,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的信心,感愛數(shù)學(xué)的內(nèi)在美。教學(xué)重點(diǎn):弄清完全平方公式的來源及其結(jié)構(gòu)特點(diǎn),用自己的語言說明公式及其特點(diǎn);會(huì)用完全平方公式進(jìn)行運(yùn)算。教學(xué)難點(diǎn):會(huì)用完全平方公式進(jìn)行運(yùn)算教學(xué)方法:探索討論、歸納總結(jié)。教學(xué)過程:一、回顧與思考活動(dòng)內(nèi)容:復(fù)習(xí)已學(xué)過的平方差公式平方差公式:(a+b)(a—b)=a2—b2;公式的結(jié)構(gòu)特點(diǎn):左邊是兩個(gè)二項(xiàng)式的乘積,即兩數(shù)和與這兩數(shù)差的積。右邊是兩數(shù)的平方差。應(yīng)用平方差公式的注意事項(xiàng):弄清在什么情況下才能使用平方差公式。二、情境引入活動(dòng)內(nèi)容:提出問題:一塊邊長為a米的正方形實(shí)驗(yàn)田,由于效益比較高,所以要擴(kuò)大農(nóng)田,將其邊長增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種(如圖)。用不同的形式表示實(shí)驗(yàn)田的總面積,并進(jìn)行比較。三、初識(shí)完全平方公式活動(dòng)內(nèi)容:通過多項(xiàng)式的乘法法則來驗(yàn)證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導(dǎo)出兩數(shù)差的完全平方公式:(a—b)2=a2—2ab+b2。引導(dǎo)學(xué)生利用幾何圖形來驗(yàn)證兩數(shù)差的完全平方公式。分析完全平方公式的結(jié)構(gòu)特點(diǎn),并用語言來描述完全平方公式。結(jié)構(gòu)特點(diǎn):左邊是二項(xiàng)式(兩數(shù)和(差))的平方;右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。語言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。四、再識(shí)完全平方公式活動(dòng)內(nèi)容:例1用完全平方公式計(jì)算:(1)(2x?3)2(2)(4x+5y)2(3)(mn?a)2(4)(—1—2x)2(5)(—2x+1)2總結(jié)口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。五、鞏固練習(xí):下列各式中哪些可以運(yùn)用完全平方公式計(jì)算。6完全平方公式:一、學(xué)習(xí)目標(biāo)會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡單的計(jì)算。了解完全平方公式的幾何背景二、學(xué)習(xí)重點(diǎn):會(huì)用完全平方公式進(jìn)行運(yùn)算。三、學(xué)習(xí)難點(diǎn):理解完全平方公式的結(jié)構(gòu)特征并能靈活應(yīng)用公式進(jìn)行計(jì)算。四、學(xué)習(xí)設(shè)計(jì)(一)預(yù)習(xí)準(zhǔn)備(1)預(yù)習(xí)書p23—26(2)思考:和的平方等于平方的和嗎?6《完全平方公式》習(xí)題已知實(shí)數(shù)x、y都大于2,試比較這兩個(gè)數(shù)的積與這兩個(gè)數(shù)的和的大小,并說明理由。已知(a+b)2=24,(a—b)2=20,求:(1)ab的值是多少?(2)a2+b2的值是多少?已知2(x+y)=—6,xy=1,求代數(shù)式(x+2)—(3xy—y)的值。《6完全平方公式》課時(shí)練習(xí)(5—x2)2等于;答案:25—10x2+x4解析:解答:(5—x2)2=25—10x2+x4分析:根據(jù)完全平方公式與冪的乘方法則可完成此題。(x—2y)2等于;答案:x2—8xy+4y2解析:解答:(x—2y)2=x2—8xy+4y2分析:根據(jù)完全平方公式與積的乘方法則可完成此題。(3a—4b)2等于;答案:9a2—24ab+16b2解析:解答:(3a—4b)2=9a2—24ab+16b2分析:根據(jù)完全平方公式可完成此題。完全平方公式教案7一、學(xué)習(xí)目標(biāo)二、學(xué)習(xí)重點(diǎn)運(yùn)用完全平方公式進(jìn)行一些數(shù)的簡便運(yùn)算三、學(xué)習(xí)難點(diǎn)靈活運(yùn)用平方差和完全平方公式進(jìn)行整式的簡便運(yùn)算四、學(xué)習(xí)設(shè)計(jì)(一)預(yù)習(xí)準(zhǔn)備(1)預(yù)習(xí)書p2627(2)思考:如何更簡單迅捷地進(jìn)行各種乘法公式的運(yùn)算?[(3)預(yù)習(xí)作業(yè):(1)(2) (3)(4):(1) (2)(二)學(xué)習(xí)過程平方差公式和完全平方公式的逆運(yùn)用由 反之反之填空:(1)(2)(3)(4)(5)(6)(7)若,則k=(8)若是完全平方式,則k=例1計(jì)算:1. 2.現(xiàn)在我們從幾何角度去解釋完全平方公式:從圖(1)中可以看出大正方形的邊長是a+b,它是由兩個(gè)小正方形和兩個(gè)矩形組成,所以大正方形的面積等于這四個(gè)圖形的面積之和.則S= =即:如圖(2)中,大正方形的邊長是a,它的面積是 。矩形DCGE與矩形BCHF是全等圖形,長都是 ,寬都是 ,所以它們的面積都是 。正方形HCGM的邊長是b,其面積就是 。正方形AFME的邊長是 ,所以它的面積是 .從圖中可以看出正方形AEMF的面積等于正方形ABCD的面積減去兩個(gè)矩形DCGE和BCHF的面積再加上正方形HCGM的面積.也就是:(ab)2= .這也正好符合完全平方公式.:(1) (2)變式訓(xùn)練:(1) (2)(3) (4)(x+5)2–(x2)(x3)(5)(x2)(x+2)(x+1)(x3) (6)(2xy)24(xy)(x+2y)拓展:(1)已知,則=(2)已知,求________,________(3)不論為任意有理數(shù),的值總是(1)已知,求和的值。(2)已知,求的值。(3).已知,求的值回顧小結(jié):在做題過程中一定要注意符號(hào)問題和正確認(rèn)識(shí)a、b表示的意義,它們可以是數(shù)、也可以是單項(xiàng)式,還可以是多項(xiàng)式,所以要記得添括號(hào)。
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1