freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

完全平方公式教案2-預覽頁

2024-11-04 22:29 上一頁面

下一頁面
 

【正文】 ________;(3)(p-1)2 =(p-1)(p-1)=_________;(4)(m-2)2=(m-2)(m-2)=_________.答案:(1)p2+2p+1;(2)m2+4m+4;(3)p2-2p+1;(4)m2-4m+4.二、探究新知:(a+b)2 和(a-b)2 ;并說明發(fā)現(xiàn)的規(guī)律。部分學生板演,然后學生交流分析過程:此題需靈活運用完全平方公式。師生行為 的思想方法:特例—歸納—猜想—驗證一用數(shù)學符號表示. 的設(shè)置是由淺入深,讓 每個學生感到學有所成,感,親身 ,讓學生掌握。作為一名數(shù)學老師,不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想、數(shù)學意識,因此本節(jié)課在教學中力圖向?qū)W生滲透換元思想和數(shù)形結(jié)合思想 。過程與方法經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力。五、教法學法多媒體輔助教學,將知識形象化、生動化,激發(fā)學生的興趣。完全平方公式的推導利用多項式與多項式的乘法法則和幾何法推導完全平方(和)公式附:有簡單的填空練習利用多項式乘法則和換元法推導完全平方 (差)公式(a+b)2=a2+2ab+b2(ab)2=a22ab+b2二、總結(jié)完全平方公式的特點介紹助記口訣:首平方,尾平方,首尾兩倍乘積放中央。利用不同的的方法來推導完全平方公式,讓學生認知數(shù)學中的不同解題方法。完全平方公式教案21.能根據(jù)多項式的乘法推導出完全平方公式;(重點)2.理解并掌握完全平方公式,并能進行計算.(重點、難點)一、情境導入計算:(1)(x+1)2。2ab+“首平方,末平方,首末兩倍中間放”.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第12題【類型二】 構(gòu)造完全平方式如果36x2+(+1)x+252是一個完全平方式,求的值.解析:先根據(jù)兩平方項確定出這兩個數(shù),再根據(jù)完全平方公式確定的值.解:∵36x2+(+1)x+252=(6x)2+(+1)x+(5)2,∴(+1)x=177。完全平方公式教案3教學目標1。教學重點和難點重點:運用完全平方式分解因式。我們學過的因式分解的方法有提取公因式法及運用平方差公式法。問:我們學過的乘法公式除了平方差公式之外,還有哪些公式?答:有完全平方公式。二、新課和討論運用平方差公式把多項式因式分解的思路一樣,把完全平方公式反過來,就得到a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2。問:具備什么特征的多項是完全平方式?答:一個多項式如果是由三部分組成,其中的兩部分是兩個式子(或數(shù))的平方,并且這兩部分的符號都是正號,第三部分是上面兩個式子(或數(shù))的乘積的二倍,符號可正可負,像這樣的式子就是完全平方式。x(3)是完全平方式。(4)不是完全平方式。y。解 25x4+10x2+1=(5x2)2+2問:請同學分析這個多項式的特點,是否可以用完全平方公式分解因式?有幾種解法?答:這個多項式由三部分組成,第一項“1”是1的平方,第三項“ ”是 的平方,第二項“- m”是1與m/4的積的2倍的相反數(shù),因此這個多項式是完全平方式,可以用完全平方公式分解因式。解法2 先提出 ,則1- m+ = (16-8m+m2)= (42-2填空:(1)x2-10x+( )2=( )2;(2)9x2+( )+4y2=( )2;(3)1-( )+m2/9=( )2。3。2。(4)是完全平方式,9m2+12m+4=(3m+2) 2。四、小結(jié)運用完全平方公式把一個多項式分解因式的主要思路與方法是:1。在選用完全平方公式時,關(guān)鍵是看多項式中的第二項的符號,如果是正號,則用公式a2+2ab+b2=(a+b) 2;如果是負號,則用公式a2-2ab+b2=(a-b) 2。(1)25m2-80m+64; (2)4a2+36a+81;(3)4p2-20pq+25q2; (4)16-8xy+x2y2;(5)a2b2-4ab+4; (6)25a4-40a2b2+16b4。答案:1。3。課堂教學設(shè)計說明1。在教學設(shè)計中安排了形式多樣的課堂練習,讓學生從不同側(cè)面理解完全平方公式的特點。通過學生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的`檢驗,得出正確的結(jié)論。②合并同類項法則③多項式乘以多項式法則。會推導完全平方公式,并能運用公式進行簡單的計算。教學重點和難點重點:能運用完全平方公式進行簡單的計算。(2)結(jié)果的項數(shù)特點。[學生回答]完全平方公式的數(shù)學表達式:(a+b)2=a2+2ab+b2;(ab)2=a22ab+b2.〈三〉、運用公式,解決問題口答:(搶答形式,活躍課堂氣氛,激發(fā)學生的學習積極性)(m+n)2=____________, (mn)2=_______________,(m+n)2=____________, (mn)2=______________,(a+3)2=______________, (c+5)2=______________,(7a)2=______________, ()2=______________.判斷:( )① (a2b)2= a22ab+b2( )② (2m+n)2= 2m2+4mn+n2( )③ (n3m)2= n26mn+9m2( )④ (5a+)2= 25a2+5ab+( )⑤ ()2= 5a25ab+( )⑥ (a2b)2=(a+2b)2( )⑦ (2a4b)2=(4a2b)2( )⑧ (5m+n)2=(n+5m)2一現(xiàn)身手① (x+y)2 =______________。⑤ (2x+3y)2 =____________。(2)兩個平方項符號永遠為正。(ab)2=a22ab+b2完全平方公式教案5運用乘法公式計算:(l) (2)(3) (4)學生活動:采取比賽的方式把學生分成四組,每組完成一題,看哪一組完成得快而且準確,每組各派一個學生板演本組題目.【教法說明】這樣做的目的是訓練學生的快速反應(yīng)能力及綜合運用知識的能力,同時也激發(fā)學生的學習興趣,活躍課堂氣氛.(四)總結(jié)、擴展這節(jié)課我們學習了乘法公式中的完全平方公式.引導學生舉例說明公式的結(jié)構(gòu)特征,公式中字母含義和運用公式時應(yīng)該注意的問題.八、布置作業(yè)完全平方公式教案6教學目標:經(jīng)歷探索完全平方公式的過程,并從完全平方公式的推導過程中,培養(yǎng)學生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達能力。教學重點:弄清完全平方公式的來源及其結(jié)構(gòu)特點,用自己的語言說明公式及其特點;會用完全平方公式進行運算。應(yīng)用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。并利用兩數(shù)和的完全平方公式推導出兩數(shù)差的完全平方公式:(a—b)2=a2—2ab+b2。語言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。了解完全平方公式的幾何背景二、學習重點:會用完全平方公式進行運算?!?完全平方公式》課時練習(5—x2)2等于;答案:25—10x2+x4解析:解答:(5—x2)2=25—10x2+x4分析:根據(jù)完全平方公式與冪的乘方法則可完成此題。矩形DCGE與矩形BCHF是全等圖形,長都是 ,寬都是 ,所以它們的面積都是 。(3).已知,求的值回顧小結(jié):在做題過程中一定要注意符號問題和正確認識a、b表示的意義,它們可以是數(shù)、也可以是單項式,還可以是多項式,所以要記得添括號。經(jīng)歷探索完全平方公式的推導過程,發(fā)展符號感,體會特殊一般特殊的認知規(guī)律。OE平分∠AOB,OF平分∠BOC.求證:OE⊥OF.分析:要證明OE⊥OF,只要證明∠EOF=90176。會推導完全平方公式,了解公式的幾何背景,會用公式計算。學習過程:一、學習準備利用多項式乘以多項式計算:(a+b)2 (ab)2這兩個特殊形式的多項式乘法結(jié)果稱為完全平方公式。2□△+△2兩個完全平方公式的轉(zhuǎn)化:(ab)2= 2=( )2+2( )+( )2=二、合作探究利用乘法公式計算:(1) (3a+2b)2 (2) (4x21)2分析:要分清題目中哪個式子相當于公式中的a ,哪個式子相當于公式中的b利用乘法公式計算:(1) 992 (2) ( )2分析:要利用完全平方公式,需具備完全平方公式的結(jié)構(gòu),所以992可以轉(zhuǎn)化( )2,( )2可以轉(zhuǎn)化為( )2利用完全平方公式計算:(1) (a+b+c)2 (2) (ab)3三、學習對照學習目標,通過預習,你覺得自己有哪些方面的收獲?又存在哪些方面的疑惑?四、自我測試下列計算是否正確,若不正確,請訂正;(1) (1+3a)2=9a26a+1(2) (3x2 )2=9x4(3) (xy+4)2=x2y2+16(4) (a2b2)2=a2b22a2b+4利用乘法公式計算:(1) (3x+1)2 (2) (a3b)2(3) (2x+ )2 (4) (3m4n)2利用乘法公式計算:(1) 9992 (2) ()2先化簡,再求值;( m3n)2( m+3n)2+2,其中m=2,n=3五、思維拓展如果x2kx+81是一個完全平方公式,則k的值是多項式4x2+1加上一個單項式后,使它能成為一個整式的完全平方,那么加上的單項式可以是已知(x+y)2=9, (xy)2=5 ,求xy的值x+y=4 ,xy=10 ,那么xy=已知x =4,則x2+ =完全平方公式教案11重點、難點根據(jù)公式的特征及問題的特征選擇適當?shù)墓接嬎?教學過程一、議一議(a+b)的正方形面積是多少?、b拍的兩個正方形面積和是多少?(1)(2)的結(jié)果嗎?:學生回答(1)(a+b) (2)a +b (3)因為(a+b) = a +2ab+b ,所以 (a+b) (a +b )=a +2ab+b a b =2ab,即(1)中的正方形面積比(2)中的正方形面積大.二、做一做例1. 利用完全平方式計算1. 102 。使學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。:通過觀察、實驗、歸納、類比、推斷獲得數(shù)學猜想,體驗數(shù)學活動充滿著探索性和創(chuàng)造性,感受證明的必要性、證明過程的嚴謹性以及結(jié)論的確定性。教師是學生學習的組織者、促進者、合作者:本節(jié)的教學過程,要為學生的動手實踐,自主探索與合作交流提供機會,搭建平臺;尊重和自己意見不一致的學生,贊賞每一位學生的結(jié)論和對自己的超越,尊重學生的個人感受和獨特見解;幫助學生發(fā)現(xiàn)他們所學東西的個人意義和社會價值,通過恰當?shù)慕虒W方式引導學生學會自我調(diào)適,自我選擇。6具體教學過程設(shè)計如下::[引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,你會計算下列各題嗎?(x+3)2=,(x3)2=,這些式子的左邊和右邊有什么規(guī)律?再做幾個試一試:(2m+3n)2=,(2m3n)2=[學生回答]分組交流、討論 多項式的結(jié)構(gòu)特點(1)原式的特點。(4)三項與原多項式中兩個單項式的關(guān)系。③(2x+3)2=。(3)中間項的符號由等號左邊的兩項符號是否相同決定。完全平方公式的應(yīng)用。這一環(huán)節(jié)的目的就是讓學生的這種錯誤或其它錯誤充分暴露出來,并讓學生充分認識到自己原有的定式思維是錯誤的,為下一步構(gòu)建新的思維模式埋下伏筆.第二環(huán)節(jié):驗證(a+2)2=a2–4a+22活動內(nèi)容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22活動目的:在前一環(huán)節(jié)已經(jīng)打破了學生的原有的思維定式的基礎(chǔ)上,給學生建立正確的思維方法,避免形成“相異構(gòu)想”.第三環(huán)節(jié):推廣到一般情況,形成公式活動內(nèi)容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2活動目的:讓學生經(jīng)歷從特殊到一般的探究過程,體驗到發(fā)現(xiàn)的快樂.第四環(huán)節(jié):數(shù)形結(jié)合活動內(nèi)容:設(shè)問:在多項式的乘法中,很多公式都都可以用幾何圖形進行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?展示動畫,用幾何圖形詮釋完全平方公式的幾何意義.學生思考:還有沒有其它的方法來詮釋完全平方公式?(課后思考)活動目的:讓學生進一步認識到數(shù)與形都不是孤立存在的,數(shù)與形是可以有機地結(jié)合在一起,從而發(fā)展學生的數(shù)形結(jié)合的數(shù)學思想.第五環(huán)節(jié):進一步拓廣活動內(nèi)容:推導兩數(shù)差的完全平方公式:(a–b)2=a2–2ab+b2方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2活動目的:讓學生經(jīng)歷由兩數(shù)和的完全平方公式拓廣到兩數(shù)差的完全平方公式的過程,體會到符號差異帶來的結(jié)果差異,由第二種推導方法體會到兩數(shù)差的完全平方公式是兩數(shù)和的完全平方公式的應(yīng)用.第六環(huán)節(jié):總結(jié)口訣、認識特征活動內(nèi)容:比較兩個公式的共同點與不同點:(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2特征:①左邊都是一個二項式的完全平方,兩者僅有一個符號不同。②。使學生知道把完全平方公式反過來就可以得到相應(yīng)的因式分解。運用這些公式把一個多項式分解因式的方法叫做運用公式法。布置作業(yè)2222
點擊復制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1