freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

二次根式教學(xué)設(shè)計最終版(編輯修改稿)

2024-11-04 17:10 本頁面
 

【文章內(nèi)容簡介】 點)2.能根據(jù)算術(shù)平方根的意義了解二次根式的概念及性質(zhì),會求二次根式中被開方數(shù)中字母的取值范圍.(重點)一、情境導(dǎo)入問題1:你能用帶有根號的式子填空嗎?(1)面積為3的正方形的邊長為________,面積為S的正方形的邊長為________.(2)一個長方形圍欄,長是寬的2倍,面積為130m2,則它的寬為________m.(3)一個物體從高處自由落下,落到地面所用的時間t(單位:s)與落下的高度h(單位:m)滿足關(guān)系h=5t2,如果用含有h的式子表示t,則t=______.問題2:上面得到的式子,,分別表示什么意義?它們有什么共同特征?二、合作探究探究點一:二次根式的定義下列各式中,哪些是二次根式,哪些不是二次根式?(1);(2);(3);(4);(5);(6)(x≤3);(7)(x≥0);(8);(9);(10)(ab≥0).解析:要判斷一個根式是不是二次根式,一是看根指數(shù)是不是2,二是看被開方數(shù)是不是非負(fù)數(shù).解:因為,=,(x≤3),(ab≥0)中的根指數(shù)都是2,且被開方數(shù)為非負(fù)數(shù),,(x≥0),的被開方數(shù)小于0,所以不是二次根式.方法總結(jié):判斷一個式子是不是二次根式,要看所給的式子是否具備以下條件:(1)帶二次根號“”;(2)被開方數(shù)是非負(fù)數(shù).探究點二:二次根式有意義的條件【類型一】 根據(jù)二次根式有意義求字母的取值范圍求使下列式子有意義的x的取值范圍.(1);(2);(3).解析:根據(jù)二次根式的性質(zhì)和分式的意義,被開方數(shù)大于或等于0且分母不等于0,列不等式(組)求解.解:(1)由題意得4-3x>0,解得x<.當(dāng)x<時,有意義;(2)由題意得解得x≤3且x≠≤3且x≠2時,有意義;(3)由題意得解得x≥-5且x≠≥-5且x≠0時,有意義.方法總結(jié):含二次根式的式子有意義的條件:(1)如果一個式子中含有多個二次根式,那么它們有意義的條件是各個二次根式中的被開方數(shù)都必須是非負(fù)數(shù);(2)如果所給式子中含有分母,則除了保證二次根式中的被開方數(shù)為非負(fù)數(shù)外,還必須保證分母不為零.【類型二】 利用二次根式的非負(fù)性求解(1)已知a、b滿足+|b-|=0,解關(guān)于x的方程(a+2)x+b2=a-1;(2)已知x、y都是實數(shù),且y=++4,求yx的平方根.解析:(1)根據(jù)二次根式的非負(fù)性和絕對值的非負(fù)性求解即可;(2)根據(jù)二次根式的非負(fù)性即可求得x的值,進(jìn)而求得y的值,進(jìn)而可求出yx的平方根.解:(1)根據(jù)題意得解得則(a+2)x+b2=a-1,即-2x+3=-5,解得x=4;(2)根據(jù)題意得解得x==4,故yx=43=64,177。=177。8,∴yx的平方根為177。8.方法總結(jié):二次根式和絕對值都具有非負(fù)性,幾個非負(fù)數(shù)的和為0,這幾個非負(fù)數(shù)都為0.探究點三:和二次根式有關(guān)的規(guī)律探究性問題先觀察下列等式,再回答下列問題.①=1+-=1;②=1+-=1;③=1+-=1.(1)請你根據(jù)上面三個等式提供的信息,寫出的結(jié)果;(2)請你按照上面各等式反映的規(guī)律,試寫出用含n的式子表示的等式(n為正整數(shù)).解析:(1)從三個等式中可以發(fā)現(xiàn),等號右邊第一個加數(shù)都是1,第二個加數(shù)是個分?jǐn)?shù),設(shè)分母為n,第三個分?jǐn)?shù)的分母就是n+1,結(jié)果是一個帶分?jǐn)?shù),整數(shù)部分是1,分?jǐn)?shù)部分的分子也是1,分母是前項分?jǐn)?shù)的分母的積;(2)根據(jù)(1)找的規(guī)律寫出表示這個規(guī)律的式子.解:(1)=1+-=1;(2)=1+-=1(n為正整數(shù)).方法總結(jié):解答規(guī)律探究性問題,都要通過仔細(xì)觀察找出字母和數(shù)之間的關(guān)系,通過閱讀找出題目隱含條件并用關(guān)系式表示出來.三、板書設(shè)計1.二次根式的定義一般地,我們把形如(a≥0)的式子叫做二次根式.2.二次根式有意義的條件被開方數(shù)(式)為非負(fù)數(shù);有意義?a≥0.通過將新知識與舊知識進(jìn)行聯(lián)系與對比,隨后由學(xué)生熟悉的實際問題出發(fā),用已有的知識進(jìn)行探究,由此引入二次根式.在教學(xué)過程中讓學(xué)生感受到研究二次根式是實際的需要,體會到數(shù)學(xué)與實際生活間的緊密聯(lián)系,以此充分激發(fā)學(xué)生學(xué)習(xí)的興趣.二次根式教學(xué)設(shè)計《二次根式》教學(xué)反思二次根式教學(xué)設(shè)計10一、教學(xué)目標(biāo)1.掌握二次根式的混合運算.2.掌握混合運算的應(yīng)用.3.通過二次根式的混合運算,培養(yǎng)學(xué)生的運算能力.4.通過混合運算知識拓展,培養(yǎng)學(xué)生的探索精神二、教學(xué)設(shè)計小結(jié)、歸納、提高三、重點、難點解決辦法1.教學(xué)重點:二次根式的混合運算.2.教學(xué)難點:混合運算的應(yīng)用.四、課時安排1課時五、教具學(xué)具準(zhǔn)備投影儀、膠片、多媒體六、師生互動活動設(shè)計復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主七、教學(xué)過程【例題】例1 化簡:(1) ; (2) .解:(1)(2)說明:在計算過程中要注意各個式子的特點,能否約分或消項(第2小題)達(dá)到化簡的目的,又要善于在規(guī)則允許的情況下可變換相鄰項的位置,如 ,結(jié)果為-1,繼續(xù)運算易出現(xiàn)符號上的差錯,而把 先變?yōu)?,這樣 則為1,繼續(xù)運算可避免錯誤.例2 解下列方程(組):(1)(2)(3)解:(1).(2)① ,得③② ,得④③-④,得把 代入①,得解得 .∴是原方程組的解.(3)由②,得③① ,得④③-④,得把 代入①,得.∴ 是原方程組的解.例3 已知 , ,求 的值.解: .., ,∴ .例4 已知 , ,求 的值.解: , ..(二)隨堂練習(xí)1.教材中P206中8.2.解不等式: .解:∴.3.已知 , ,求 的值.解:3. ,或 ..∴.4.已知 , ,求: 的值.解 4..5.已知 ,求 的值.解 5. ..6.不求方根的值比較 與 的大?。?6.∵∴∴(三)總結(jié)、擴展根據(jù)已知條件,求一個代數(shù)的值,要注意條件或代數(shù)式的化簡,有時條件和要求的代數(shù)式都需要化簡,當(dāng)把條件化簡后,代數(shù)式的化簡要朝著條件化簡的結(jié)果去化簡.(四)布置作業(yè)教材中P207B組3和補充作業(yè).補充作業(yè):1.已知 ,求 的值.2.已知 , ,求 的值.(五)板書設(shè)計標(biāo) 題1.例題……3.例題……2.練習(xí)題4.練習(xí)題八、背景知識與課外閱讀二次根式的混和運算方法和順序1.方法 (1)應(yīng)用二次根式乘法、除法和加減法運算法則.(2)在實數(shù)范圍內(nèi)運算律仍適用.(3)二次根式的乘法,與多項式的乘法相類似,遇運用多項式乘法公式時,也可以運用乘法公式.2.順序 先乘方、后乘除,最后加減,有括號的先算括號內(nèi)的數(shù).第三篇:二次根式教學(xué)設(shè)計(8篇)篇1:二次根式教學(xué)設(shè)計【知識與技能】,并利用 (a≥0)的意義解答具體題目. (a≥0)是非負(fù)數(shù)和( )2=a. =a(a≥0)并利用它進(jìn)行計算和化簡.【過程與方法】,根據(jù)問題給出概念,應(yīng)用概念解決實際問題.,用邏輯推理的方法推出 (a≥0)是一個非負(fù)數(shù),用具體數(shù)據(jù)結(jié)合算術(shù)平方根的意義導(dǎo)出( )2=a(a≥0),最后運用結(jié)論嚴(yán)謹(jǐn)解題.,探究并利用這個結(jié)論解決具體問題.【情感態(tài)度】通過具體的數(shù)據(jù)體會從特殊到一般、分類的數(shù)學(xué)思想,理解二次根式的概念及二次根式的有關(guān)性質(zhì).【教學(xué)重點】 (a≥0)的式子叫做二次根式.2. (a≥0)是一個非負(fù)數(shù);( )2=a(a≥0)及其運用.【教學(xué)難點】利用“ (a≥0)”解決具體問題.關(guān)鍵:用分類思想的方法導(dǎo)出a(a≥0)是一個非負(fù)數(shù);用探究的方法導(dǎo)出一、情境導(dǎo)入,初步認(rèn)識回顧:當(dāng)a是正數(shù)時, 表示a的算術(shù)平方根,即正數(shù)a的正的平方根.當(dāng)a是零時, 等于0,它表示零的平方根,.當(dāng)a是負(fù)數(shù)時, 沒有意義.【教學(xué)說明】通過對算術(shù)平方根的回顧引入二次根式的概念.二、思考探究,獲取新知概括: (a≥0)表示非負(fù)數(shù)a的算術(shù)平方根,也就是說, (a≥0)是一個非負(fù)數(shù),:(1) ≥0;(2)( )2=a(a≥0).形如 (a≥0)的式子叫做二次根式.注意:在 中,a的取值必須滿足a≥0,即二次根式的被開方數(shù)必須是非負(fù)數(shù).思考: 等于什么?我們不妨取a的一些值,如2,2,3,3等,分別計算對應(yīng)的 的值,看看有什么規(guī)律.概括:當(dāng)a≥0時, =a;當(dāng)a<0時, =a.三、運用新知,深化理解,下列各式有意義?:【教學(xué)說明】可由學(xué)生搶答完成,再由老師總結(jié)歸納.四、師生互動,課堂小結(jié):(1)( )2=a(a≥0);(2)當(dāng)a≥0時, =a;當(dāng)a<0時, =a.,你掌握了哪些新知識,還有哪些疑問?請與同伴交流.【教學(xué)說明】教師引導(dǎo)學(xué)生回顧知識點,讓學(xué)生大膽發(fā)言,進(jìn)行知識提煉和知識歸納.:從教材相應(yīng)練習(xí)和“”中選取.“課時作業(yè)”部分.本節(jié)課從復(fù)習(xí)算術(shù)平方根入手引入二次根式的概念,再通過特殊數(shù)據(jù)的計算,理解二次根式的有關(guān)性質(zhì),經(jīng)歷觀察、歸納、分類討論等思維過程,從中獲得數(shù)學(xué)知識與技能,體驗教學(xué)活動的方法.篇2:二次根式教學(xué)設(shè)計一、教學(xué)目標(biāo)知識與技能:理解二次根式的概念。理解二次根式的基本性質(zhì)。過程與方法:能運用二次根式的概念解決有關(guān)問題、情感態(tài)度與價值觀:經(jīng)歷觀察、比較、總結(jié)和應(yīng)用等數(shù)學(xué)活動,感受數(shù)學(xué)活動充滿了探索性和創(chuàng)造性,體驗發(fā)現(xiàn)的快樂,并提高應(yīng)用的意識。二、學(xué)情分析學(xué)生已經(jīng)學(xué)習(xí)了“整式”、“平方根”、“算術(shù)平方根”等知識,已經(jīng)具備了學(xué)習(xí)二次根式的知識基礎(chǔ)和心理基礎(chǔ),但學(xué)生剛認(rèn)識二次根式,學(xué)習(xí)將有一定難度。學(xué)生知識障礙點是二次根式的概念及運算,如果學(xué)生在此不能很好地理解和正確的認(rèn)知,將對今后學(xué)習(xí)產(chǎn)生很大影響,所以要求學(xué)生積極探究、思考,及時加以鞏固,克服學(xué)習(xí)困難,真正“學(xué)會”。三、重點難點教學(xué)重點為了解二次根式的概念,知道被開方數(shù)必須是非負(fù)數(shù)的理由,知道二次根式本身是一個非負(fù)數(shù),會求二次根式中被開方數(shù)字母的取值范圍.教學(xué)難點為:理解二次根式的雙重非負(fù)性、四、教學(xué)過程活動1【導(dǎo)入】活動一問題1你能用帶有根號的的式子填空嗎?(1)面積為3的正方形的邊長為_______,面積為S的正方形的邊長為_______.(2)一個長方形圍欄,長是寬的2倍,面積為130m?,則它的寬為______m.(3)一個物體從高處自由落下,落到地面所用的時間t(單位:s)與開始落下的高度h(單位:m)滿足關(guān)系h =5t?,如果用含有h的式子表示t,則t= _____.師生活動:學(xué)生獨立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進(jìn)行適當(dāng)引導(dǎo)和評價。問題2上面得到的式子√3,√s,√h5分別表示什么意義?它們有什么共同特征?活動2【活動】講授問題3你能用一個式子表示一個非負(fù)數(shù)的算術(shù)平方根嗎?師生活動:學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如√a(a≥0)的式子叫做二次根式,“√ ”稱為二次根號.追問:在二次根式的概念中,為什么要強調(diào)“a≥0”?師生活動:教師引導(dǎo)學(xué)生討論,知道二次根式被開方數(shù)必須是非負(fù)數(shù)的理由.活動3【講授】辨析概念例1當(dāng)x是怎樣的實數(shù)時,√x2在實數(shù)范圍內(nèi)有意義?師生活動:引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,鞏固學(xué)生對二次根式的被開方數(shù)為非負(fù)數(shù)的理解.例2當(dāng)x是怎樣的實數(shù)時,√x2在實數(shù)范圍內(nèi)有意義?√x3呢?師生活動:先讓學(xué)生獨立思考,再追問.問題4你能比較√a與0的大小嗎?師生活動:通過分a0和a= 0這兩種情況的討論,比較√a與0的大小,引導(dǎo)學(xué)生得出√a ≥0的結(jié)論,強化學(xué)生對二次根式本身為非負(fù)數(shù)的理解,活動4【練習(xí)】練習(xí)練習(xí)當(dāng)x是什么實數(shù)時,下列各式有意義、(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、練習(xí)1完成教科書第3頁的練習(xí)、練習(xí)2當(dāng)x是什么實數(shù)時,下列各式有意義、(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、練習(xí)1完成教科書第3頁的練習(xí)、練習(xí)2當(dāng)x是什么實數(shù)時,下列各式有意義、(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、練習(xí)1完成教科書第3頁的練習(xí)、練習(xí)2當(dāng)x是什么實數(shù)時,下列各式有意義、(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、活動5【活動】小結(jié)小結(jié):二次根式的意義:√a(a≥0)二次根式的性質(zhì):性質(zhì)1 √a2 = a(a≥0)活動6【測試】目標(biāo)檢測下列各式中,一定是二次根式的是()A、√a B√3 、C√x2+1 、D、3√5當(dāng)x取什么時,二次根式√3x無意義.當(dāng)x取何值時,二次根式√x+3有最小值,其最小值是.對于√3a1a3,小紅根據(jù)被開方數(shù)是非負(fù)數(shù),得出a的取值范圍是a ≥ 13.小慧認(rèn)為還應(yīng)考慮分母不為0的情況.你認(rèn)為小慧的想法正確嗎?試求出a的取值范圍.活動7【作業(yè)】布置作業(yè)教科書習(xí)題11第1,3,5,7,10題.篇3:二次根式教學(xué)設(shè)計教學(xué)準(zhǔn)備(1)學(xué)生能用二次根式表示實際問題中的數(shù)量和數(shù)量關(guān)系,體會研究二次根式的必要性.(2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負(fù)數(shù)的理由,知道二次根式本身是一個非負(fù)數(shù),會求二次根式中被開方數(shù)字母的取值范圍. 理解二次根式的雙重非負(fù)性.教學(xué)過程1.創(chuàng)設(shè)情境,提出問題問題1你能用帶有根號的的式子填空嗎?(1)面積為3 的正方形的邊長為_______,面積為S 的正方形的邊長為_______.(2)一個長方形圍欄,長是寬的2 倍,面積為130m?,則它的寬為______m.(3)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:m)滿足關(guān)系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.師生活動:學(xué)生獨立完成上述問題,用
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1