【總結(jié)】基本不等式請(qǐng)嘗試用四個(gè)全等的直角三角形拼成一個(gè)“風(fēng)車”圖案?趙爽弦圖a2+b2≥2ab?該結(jié)論成立的條件是什么?若a,b∈R,那么?形的角度?數(shù)的角度a2+b2-2ab=(a-b)2≥0a0,b0
2024-11-17 05:40
【總結(jié)】第11課時(shí):§基本不等式的證明(2)【三維目標(biāo)】:一、知識(shí)與技能;;,求最值時(shí)注意一正二定三相等。;基本不等式在證明題和求最值方面的應(yīng)用。二、過程與方法通過幾個(gè)例題的研究,進(jìn)一步掌握基本不等式2abab??,并會(huì)用此定理求某些函數(shù)的最大、最小值。三、情感、
2024-11-20 00:26
【總結(jié)】不等關(guān)系與不等式教學(xué)目標(biāo):1.知識(shí)與技能:掌握不等式的基本性質(zhì),會(huì)用不等式的性質(zhì)證明簡(jiǎn)單不等式,掌握比較大小的方法.2.過程與方法:通過解決具體問題,學(xué)會(huì)依據(jù)具體問題的實(shí)際背景分析問題、解決問題的方法.3.情感、態(tài)度與價(jià)值觀:通過解決具體問題,體會(huì)數(shù)學(xué)在生活中的重要作用,培養(yǎng)嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣.重點(diǎn):不等式的概念和比
2024-12-09 03:41
【總結(jié)】不等關(guān)系與不等式(1)教學(xué)目標(biāo):1.知識(shí)與技能:通過具體情景,感受在現(xiàn)實(shí)世界和日常生活中存在著大量不等關(guān)系,理解不等式(組)的實(shí)際背景,掌握不等式的基本性質(zhì),會(huì)用不等式的性質(zhì)證明簡(jiǎn)單的不等式.2.過程與方法:通過解決具體問題,學(xué)會(huì)依據(jù)具體問題的實(shí)際背景分析問題、解決問題的方法.3.情感、態(tài)度與價(jià)值觀:通過解決具體問題,體會(huì)數(shù)
【總結(jié)】淄川般陽中學(xué)洪貴云基本不等式:(說課)2baab??教材分析教法分析教學(xué)目標(biāo)教學(xué)過程設(shè)計(jì)說明一.教材分析(一)教材的地位和作用(二)課時(shí)安排一.教材分析(一)教材的地位和作用基本不等式
2025-08-04 23:52
【總結(jié)】第2課時(shí)基本不等式【課標(biāo)要求】1.理解并掌握定理1、定理2,會(huì)用兩個(gè)定理解決函數(shù)的最值或值域問題.2.能運(yùn)用平均值不等式(兩個(gè)正數(shù)的)解決某些實(shí)際問題.【核心掃描】1.基本不等式常用來考查函數(shù)最值等問題,要注意不等式成立的前提條件.(重點(diǎn))2.實(shí)際應(yīng)用中的最值問題通常轉(zhuǎn)化為y=ax+bx
2025-07-23 17:21
【總結(jié)】第三章不等式課題:§不等式與不等關(guān)系第1課時(shí)授課類型:新授課【教學(xué)目標(biāo)】1.知識(shí)與技能:通過具體情景,感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)的實(shí)際背景,掌握不等式的基本性質(zhì);2.過程與方法:通過解決具體問題,學(xué)會(huì)依據(jù)具體問題的實(shí)際背景分析問題、解決問題的方法;3.情態(tài)與
2024-11-19 20:24
【總結(jié)】均值不等式的應(yīng)用(求最值)回顧一下重要不等式:均值不等式:222abab??(,0)2ababab???幾個(gè)重要的變形:2(0,0)ababab????2(,0)2ababab?????????222()(,)22a
2024-11-18 08:48
【總結(jié)】溫故知新1、比較兩實(shí)數(shù)大小的常用方法△=b2-4ac△0△=0△0)的圖象ax2+bx+c=0(a0)的根ax2+bx+0(a0)的解集ax2+bx+c0(a&
2024-11-17 17:33
【總結(jié)】專題基本不等式編者:高成龍專題基本不等式【一】基礎(chǔ)知識(shí)基本不等式:(1)基本不等式成立的條件:;(2)等號(hào)成立的條件:當(dāng)且僅當(dāng)時(shí)取等號(hào).(1);(2);【二】例題分析【模塊1】“1”的巧妙替換【例1】已知,且,則的最小值為
2025-08-05 19:27
【總結(jié)】高中數(shù)學(xué)必修五基本不等式題型(精編)變2.下列結(jié)論正確的是()A.若,則B.若,則C.若,,則D.若,則3.若m=(2a-1)(a+2),n=(a+2)(a-3),則m,n的大小關(guān)系正確的是例2、解下列不等式(1)
2025-04-04 05:12
【總結(jié)】第5課時(shí)基本不等式,能借助幾何圖形說明基本不等式的意義.(小)值.“一正二定三相等”.如圖是在北京召開的第24界國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車,代表中國(guó)人民熱情好客.在正方形ABCD中有4個(gè)全等的直角三角形,設(shè)直角三
2024-12-08 02:37
【總結(jié)】一元二次不等式及其解法一.引言:本講學(xué)習(xí)要求:掌握二次函數(shù)的概念、圖象及性質(zhì);理解一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系,掌握?qǐng)D象法解一元二次不等式的方法;能利用二次函數(shù)研究一元二次方程的實(shí)根分布條件;能求二次函數(shù)的區(qū)間最值;培養(yǎng)數(shù)形結(jié)合的能力,培養(yǎng)分類討論的思想方法,培養(yǎng)抽象概括能力和邏輯思維能力.學(xué)習(xí)重點(diǎn)為:二次函數(shù)、一元二次方程及一元二次
2024-12-09 03:40
【總結(jié)】基本不等式的應(yīng)用教學(xué)目標(biāo):一、知識(shí)與技能1.能利用基本不等式解決最值問題;2.會(huì)利用基本不等式解決與三角有關(guān)問題.二、過程與方法1.通過實(shí)例體會(huì)基本不等式在最值問題中的應(yīng)用;2.通過實(shí)例體會(huì)總結(jié)基本不等式在應(yīng)用中需要注意的問題.三、情感、態(tài)度與價(jià)值觀通過親歷解題的過程,
2024-12-05 10:12
【總結(jié)】三種學(xué)習(xí)能力一、獨(dú)立探求知識(shí)的能力這種能力也可以叫自學(xué)能力,在外界條件完全相同的情況下,不同的學(xué)生所取得的學(xué)習(xí)成績(jī)是不同的,這有多方面的原因,但其中自學(xué)能力是一個(gè)重要原因.那些優(yōu)秀的同學(xué)往往具有較強(qiáng)的自學(xué)能力,他們不僅僅滿足在老師的指導(dǎo)下學(xué)習(xí),更注重獨(dú)立探求知識(shí).他們注重對(duì)書本的自學(xué)理解,遇到問題,并不急于求教,而是首先通過獨(dú)立思考來解決,他們總是根