freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

導(dǎo)數(shù)與不等式證明(絕對(duì)精華)合集5篇(編輯修改稿)

2025-10-31 05:11 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 1x1x20,即x0時(shí),:當(dāng)x1時(shí),有l(wèi)n(x+1)lnxln(x+2).1+x+12x成立。2分析 只要把要證的不等式變形為ln(x+1)ln(x+2),然后把x相對(duì)固定看作常數(shù),并選取輔助函lnxln(x+1)數(shù)f(x)=ln(x+1).則只要證明f(x)在(0,+165。): 作輔助函數(shù)f(x)=ln(x+1)(x1)lnxlnxln(x+1)xlnx(x+1)ln(x+1)=于是有f162。(x)=x+12xlnxx(x+1)ln2x因?yàn)?1xx+1, 故0lnxln(x+1)所以 xlnx(x+1)ln(x+1)(1,+165。)因而在內(nèi)恒有f39。(x)0,所以f(x)在區(qū)間(1,+165。)x1+x,可知f(x)f(x+1)即 ln(x+1)ln(x+2)lnxln(x+1)所以 ln2(x+1)lnxln(x+2).利用導(dǎo)數(shù)知識(shí)證明不等式是導(dǎo)數(shù)應(yīng)用的一個(gè)重要方面,也成為高考的一個(gè)新熱點(diǎn),其關(guān)鍵是構(gòu)造適當(dāng)?shù)暮瘮?shù),判斷區(qū)間端點(diǎn)函數(shù)值與0的關(guān)系,其實(shí)質(zhì)就是利用求導(dǎo)的方法研究函數(shù)的單調(diào)性,通過(guò)單調(diào)性證明不等式。ln(1+x)x,其中x 因?yàn)槔?中不等式的不等號(hào)兩邊形式不一樣,對(duì)它作差ln(1+x)(x),則發(fā)現(xiàn)作差以后21+x)(1,+xx2證明: 先證 xln(1+x)2x2設(shè) f(x)=ln(1+x)(x)(x0)21x21+0)0=0 f(x)=則 f(0)=ln(1+x=1+x1+x39。Q x0 即 1+x0 x20x2\ f162。(x)=0 ,即在(0,+165。)上f(x)單調(diào)遞增1+xx2\ f(x)f(0)=0 \ ln(1+x)x21+x)x。令 g(x)=ln(1+x)x 再證 ln(則 g(0)=0 g162。(x)=11 1+x1\ln(1+x)x Q x0 \ 1 \ g162。(x)0 1+xx2\ xln(1+x)x 練習(xí):3(2001年全國(guó)卷理20)已知i,m,n是正整數(shù),且1i163。mn證明:(1+m)n(1+n)m分析:要證(1+m)n(1+n)m成立,只要證ln(1+m)nln(1+n)m即要證11ln(1+m)ln(1+n)成立。因?yàn)閙11ln(1+m)ln(1+n); mn從而:(1+m)n(1+n)m。評(píng)注:這類非明顯一元函數(shù)式的不等式證明問(wèn)題,首先變換成某一個(gè)一元函數(shù)式分別在兩個(gè)不同點(diǎn)處的函數(shù)值的大小比較問(wèn)題,只要將這個(gè)函數(shù)式找到了,通過(guò)設(shè)函數(shù),求導(dǎo)判斷它的單調(diào)性,就可以解決不等式證明問(wèn)題。難點(diǎn)在于找這個(gè)一元函數(shù)式,這就是“構(gòu)造函數(shù)法”,通過(guò)這類數(shù)學(xué)方法的練習(xí),對(duì)培養(yǎng)分析問(wèn)題、解決問(wèn)題的能力是有很大好處的,這也是進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)所需要的。第四篇:利用導(dǎo)數(shù)證明不等式利用導(dǎo)數(shù)證明不等式?jīng)]分都沒(méi)人答埃。覺(jué)得可以就給個(gè)好評(píng)!最基本的方法就是將不等式的的一邊移到另一邊,然后將這個(gè)式子令為一個(gè)函數(shù)f(x).對(duì)這個(gè)函數(shù)求導(dǎo),判斷這個(gè)函數(shù)這各個(gè)區(qū)間的單調(diào)性,然后證明其最大值(或者是最小值)!1時(shí),證明不等式xln(x+1)設(shè)函數(shù)f(x)=xln(x+1)求導(dǎo),f(x)39。=11/(1+x)=x/(x+1)0所以f(x)在(1,+無(wú)窮大)上為增函數(shù)f(x)f(1)=1ln2o所以xln(x+12..證明:aa^20其中0F(a)=aa^2F39。(a)=12a當(dāng)00。當(dāng)1/2因此,F(xiàn)(a)min=F(1/2)=1/40即有當(dāng)000,證明:不等式xx^3/6先證明sinx因?yàn)楫?dāng)x=0時(shí),sinxx=0如果當(dāng)函數(shù)sinxx在x0是減函數(shù),那么它一定因?yàn)閏osx1≤0所以sinxx是減函數(shù),它在0點(diǎn)有最大值0,知sinx再證xx179。/6對(duì)于函數(shù)xx179。/6sinx當(dāng)x=0時(shí),它的值為0對(duì)它求導(dǎo)數(shù)得1x178。/2cosx如果它要證x178。/2+cosx10x0再次用到函數(shù)關(guān)系,令x=0時(shí),x178。/2+cosx1值為0再次對(duì)它求導(dǎo)數(shù)得xsinx根據(jù)剛才證明的當(dāng)x0sinxx178。/2cosx1是減函數(shù),在0點(diǎn)有最大值0x178。/2cosx10所以xx179。/6sinx是減函數(shù),在0點(diǎn)有最大值0得xx179。/6利用函數(shù)
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1