【總結(jié)】導(dǎo)數(shù)的概念及其幾何意義導(dǎo)數(shù)的概念同步練習(xí)一,選擇題:1.已知函數(shù)f(x)=2x+5,當(dāng)x從2變化到4時(shí),函數(shù)的平均變化率是()A、2B、4C、2D、-22.一個(gè)物體的運(yùn)動(dòng)方程為21stt=-+其中S的單位是米,t的單位
2024-12-05 06:34
【總結(jié)】導(dǎo)數(shù)的概念及應(yīng)用高三備課高考考綱透析:(理科)?(1)了解導(dǎo)數(shù)概念的某些實(shí)際背景(如瞬時(shí)速度、加速度、光滑曲線切線的斜率等);掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義;理解導(dǎo)函數(shù)的概念。(2)熟記基本導(dǎo)數(shù)公式;掌握兩個(gè)函數(shù)和、差、積、商的求導(dǎo)法則.了解復(fù)合函數(shù)的求導(dǎo)法則.會(huì)求某些簡單函數(shù)的導(dǎo)數(shù)。(3)理
2024-08-14 19:01
【總結(jié)】導(dǎo)數(shù)的概念在許多實(shí)際問題中,需要研究變量的變化速度。如物體的運(yùn)動(dòng)速度,電流強(qiáng)度,線密度,比熱,化學(xué)反應(yīng)速度及生物繁殖率等,所有這些在數(shù)學(xué)上都可歸結(jié)為函數(shù)的變化率問題,即導(dǎo)數(shù)。本章將通過對實(shí)際問題的分析,引出微分學(xué)中兩個(gè)最重要的基本概念——導(dǎo)數(shù)與微分,然后再建立求導(dǎo)數(shù)與微分的運(yùn)算公式和法則,從而解決有關(guān)變化率的計(jì)算問題。
2024-08-25 01:04
【總結(jié)】第二章微積分學(xué)的創(chuàng)始人:德國數(shù)學(xué)家Leibniz微分學(xué)導(dǎo)數(shù)描述函數(shù)變化快慢微分描述函數(shù)變化程度都是描述物質(zhì)運(yùn)動(dòng)的工具(從微觀上研究函數(shù))導(dǎo)數(shù)與微分導(dǎo)數(shù)思想最早由法國數(shù)學(xué)家Ferma在研究極值問題中提出.英國數(shù)學(xué)家Newton一、引例二、導(dǎo)數(shù)的定義三、導(dǎo)數(shù)的幾何意義
2024-10-19 04:38
【總結(jié)】返回后頁前頁導(dǎo)數(shù)是微分學(xué)的核心概念,是研究函數(shù)§1導(dǎo)數(shù)的概念一、導(dǎo)數(shù)的概念化率”,就離不開導(dǎo)數(shù).三、導(dǎo)數(shù)的幾何意義二、導(dǎo)函數(shù)態(tài)的有力工具.無論何種學(xué)科,只要涉及“變與自變量關(guān)系的產(chǎn)物,又是深刻研究函數(shù)性返回返回后頁前頁一、導(dǎo)數(shù)的
2024-08-21 19:14
【總結(jié)】精品資源高三數(shù)學(xué)第一輪復(fù)習(xí)講義(74)導(dǎo)數(shù)的概念及運(yùn)算一.復(fù)習(xí)目標(biāo):理解導(dǎo)數(shù)的概念和導(dǎo)數(shù)的幾何意義,會(huì)求簡單的函數(shù)的導(dǎo)數(shù)和曲線在一點(diǎn)處的切線方程.二.知識(shí)要點(diǎn):1.導(dǎo)數(shù)的概念:
2025-04-17 00:39
【總結(jié)】第二章導(dǎo)數(shù)與微分只有微分學(xué)才能使自然科學(xué)有可能用數(shù)學(xué)來不僅僅表明狀態(tài),并且也表明過程:運(yùn)動(dòng).恩格斯微分學(xué)???導(dǎo)數(shù)描述函數(shù)變化快慢微分描述函數(shù)變化程度是描述物質(zhì)運(yùn)動(dòng)的工具(從微觀上研究函數(shù))微分概念的產(chǎn)生是為了描述曲線的切線和運(yùn)動(dòng)質(zhì)點(diǎn)速度,微積分分為
2024-12-08 00:41
【總結(jié)】變化率問題與導(dǎo)數(shù)的概念問題.吹氣球時(shí),會(huì)發(fā)現(xiàn):隨著氣球內(nèi)空氣容量的增加,氣球的半徑增加得越來越慢,能從數(shù)學(xué)的角度解釋這一現(xiàn)象嗎?解:可知:V(r)=πr3即:r(V)=343?V當(dāng)空氣容量V從0增加1L時(shí),半徑增加了r(1)-r(0)=氣球平
2024-08-10 18:04
2024-08-25 00:22
【總結(jié)】1北師大版高中數(shù)學(xué)選修2-2第二章《變化率與導(dǎo)數(shù)》法門高中姚連省制作2一、教學(xué)目標(biāo):理解導(dǎo)數(shù)的概念,會(huì)利用導(dǎo)數(shù)的幾何意義求曲線上某點(diǎn)處的切線方程。二、教學(xué)重點(diǎn):曲線上一點(diǎn)處的切線斜率的求法教學(xué)難點(diǎn):理解導(dǎo)數(shù)的幾何意義三、教學(xué)方法:探析歸納,講練結(jié)合四、教學(xué)過程3,它是從眾多實(shí)際問
2024-11-12 16:44
2024-08-14 19:13
【總結(jié)】河北饒陽中學(xué)2014屆數(shù)學(xué)一輪復(fù)習(xí)試題[來源:中教網(wǎng)]A組 專項(xiàng)基礎(chǔ)訓(xùn)練(時(shí)間:35分鐘,滿分:57分)一、選擇題(每小題5分,共20分)1.若函數(shù)f(x)=ax4+bx2+c滿足f′(1)=2,則f′(-1)等于 ( )A.-1B.-2C.2D.0答案 B解析 f′(x)=4ax3+2bx,∵f′(x)為奇函數(shù)且f′(1)=2
2024-08-26 10:36
【總結(jié)】第五章導(dǎo)數(shù)與微分§1導(dǎo)數(shù)的概念《數(shù)學(xué)分析》電子教案第五章導(dǎo)數(shù)與微分§1導(dǎo)數(shù)的概念【教學(xué)目的】深刻理解導(dǎo)數(shù)的概念,能準(zhǔn)確表達(dá)其定義;明確其實(shí)際背景并給出物理、幾何解釋;能夠從定義出發(fā)求某些函數(shù)的導(dǎo)數(shù);知道導(dǎo)數(shù)與導(dǎo)函數(shù)的相互聯(lián)系和區(qū)別;明確導(dǎo)數(shù)與單側(cè)導(dǎo)
2024-08-03 06:21
【總結(jié)】§2導(dǎo)數(shù)的概念及其幾何意義導(dǎo)數(shù)的概念雙基達(dá)標(biāo)?限時(shí)20分鐘?1.函數(shù)f(x)在x0處可導(dǎo),則limh→0f?x0+h?-f?x0?h().A.與x0、h都有關(guān)B.僅與x0有關(guān),而與h無關(guān)C.僅與h有關(guān),而與x0無關(guān)D.與x0、h均無關(guān)答案B
2024-12-03 00:14
【總結(jié)】四、反函數(shù)1()xfy??y=f(x)與互為反函數(shù),在同一平面直1()xfy??角坐標(biāo)系中表示同一條曲線.習(xí)慣上常將y=f(x)的反函數(shù)寫作,此1()yfx??時(shí)兩者在同一平面直角坐標(biāo)系中的圖形關(guān)于y=x對稱.若對函數(shù)
2024-08-02 06:10