【總結(jié)】導(dǎo)數(shù)的概念在許多實際問題中,需要研究變量的變化速度。如物體的運動速度,電流強度,線密度,比熱,化學(xué)反應(yīng)速度及生物繁殖率等,所有這些在數(shù)學(xué)上都可歸結(jié)為函數(shù)的變化率問題,即導(dǎo)數(shù)。本章將通過對實際問題的分析,引出微分學(xué)中兩個最重要的基本概念——導(dǎo)數(shù)與微分,然后再建立求導(dǎo)數(shù)與微分的運算公式和法則,從而解決有關(guān)變化率的計算問題。
2025-08-05 19:13
【總結(jié)】))()(xxfxxfkPQ?????)斜率無限趨限趨近點P處切,時0無限趨限當(PQkx?知識照顧設(shè)物體作直線運動所經(jīng)過的路程為s=f(t)。以t0為起始時刻,物體在?t時間內(nèi)的平均速度為?vttfttfts????????)()
2025-11-10 13:12
【總結(jié)】北京四中龍門網(wǎng)絡(luò)教育技術(shù)有限公司BeijingEtiantianNetEducationalTechnologyCo.,Ltd讓更多的孩子得到更好的教育2021/11/121導(dǎo)數(shù)的概念曲線的切線和瞬時速度北京四中龍門網(wǎng)絡(luò)教育技術(shù)有限公司BeijingEtiantianNetEducationalTechnologyC
2025-10-10 16:25
【總結(jié)】第九章多元函數(shù)的微分及其應(yīng)用一、幾個主要概念二.多元函數(shù)的微分法則(計算)三.多元函數(shù)微分學(xué)的應(yīng)用一、幾個主要概念及計算:以函數(shù)u=f(x,y,z)為例,點1、偏導(dǎo)數(shù):xzyxfzyxxfxzzyxfPxuxxxx???????????????),,(),,(li
2025-07-24 09:58
【總結(jié)】四、反函數(shù)1()xfy??y=f(x)與互為反函數(shù),在同一平面直1()xfy??角坐標系中表示同一條曲線.習慣上常將y=f(x)的反函數(shù)寫作,此1()yfx??時兩者在同一平面直角坐標系中的圖形關(guān)于y=x對稱.若對函數(shù)
2025-07-24 06:10
【總結(jié)】一個小球自由下落,它在下落3秒時的速度是多少??一個小球自由下落,求它從3s到(3+Δt)s這段時間內(nèi)的平均速度。變題:解:⑴先求從3s到(3+Δt)s這段時間內(nèi)的位移的增量Δs;記自由落體運動的方程為s=s(t)=·t2則s(3+Δt)=(3+Δt)2
2025-10-25 20:19
【總結(jié)】3.2導(dǎo)數(shù)的運算第一課時常見函數(shù)的導(dǎo)數(shù)學(xué)習目標1.能根據(jù)定義求函數(shù)y=kx+b,y=c,y=x,y=x2,y=1x的導(dǎo)數(shù).2.掌握常見的基本初等函數(shù)的導(dǎo)數(shù)公式,并能求簡單函數(shù)的導(dǎo)數(shù).課堂互動講練知能優(yōu)化訓(xùn)練3.課前自主學(xué)案課前自主學(xué)案
【總結(jié)】1北師大版高中數(shù)學(xué)選修2-2第二章《變化率與導(dǎo)數(shù)》法門高中姚連省制作2一、教學(xué)目標:理解導(dǎo)數(shù)的概念,會利用導(dǎo)數(shù)的幾何意義求曲線上某點處的切線方程。二、教學(xué)重點:曲線上一點處的切線斜率的求法教學(xué)難點:理解導(dǎo)數(shù)的幾何意義三、教學(xué)方法:探析歸納,講練結(jié)合四、教學(xué)過程3,它是從眾多實際問
2025-11-03 16:44
【總結(jié)】第一節(jié)導(dǎo)數(shù)的概念及運算第三單元導(dǎo)數(shù)及其應(yīng)用基礎(chǔ)梳理1.函數(shù)f(x)在區(qū)間[x1,x2]上的平均變化率(1)函數(shù)f(x)在區(qū)間[x1,x2]上的平均變化率為________.(2)平均變化率是曲線陡峭程度的“________”,或者說,曲線陡峭程度是平均變化率的“________”.2.函數(shù)f(x)在x=x
2025-11-03 17:12
【總結(jié)】§7.函數(shù)變化率在經(jīng)濟中的應(yīng)用1.幾個經(jīng)濟學(xué)中常用的經(jīng)濟函數(shù)函數(shù)的導(dǎo)數(shù),又稱為函數(shù)的變化率,在經(jīng)濟上有很多的應(yīng)用。(1)成本函數(shù)(2)需求函數(shù)(3)收益函數(shù)(4)利潤函數(shù)2.經(jīng)濟學(xué)中的邊際函數(shù)在經(jīng)濟管理上,往往需要判斷在現(xiàn)有的生產(chǎn)情況下,再增加生產(chǎn)量在經(jīng)濟上是否有利。經(jīng)濟管理人員
2025-04-29 00:34
【總結(jié)】導(dǎo)數(shù)的綜合應(yīng)用預(yù)測數(shù)據(jù)庫知識數(shù)據(jù)庫技能數(shù)據(jù)庫經(jīng)典例題備選1~56~1011~12知識數(shù)據(jù)庫技能數(shù)據(jù)庫預(yù)測數(shù)據(jù)庫經(jīng)典例題備選1~56~1011~12知識數(shù)據(jù)庫技能數(shù)據(jù)庫預(yù)測數(shù)據(jù)庫經(jīng)典例題備選1~56~1011~12知識數(shù)據(jù)庫技能數(shù)據(jù)庫
2025-02-21 12:14
【總結(jié)】基本初等函數(shù)的導(dǎo)數(shù)公式1.2.()3.4.5.ln6.7.8.nRa?'n'n-1''x'xx'x'a'若f(x)=c,則f(x)=0若f(x)=x,則f(x)=nx
2025-10-25 19:25
【總結(jié)】一、問題的提出二、導(dǎo)數(shù)的定義四、函數(shù)可導(dǎo)性與連續(xù)性的關(guān)系五、小結(jié)思考題三、導(dǎo)數(shù)的幾何意義第一節(jié)導(dǎo)數(shù)概念一、問題的提出0tt?,0時刻的瞬時速度求tt考慮最簡單的變速直線運動--自由落體運動,如圖,,0tt的時刻取一鄰近于,?運動時間ts???v平均速度
2025-08-21 12:41
【總結(jié)】Chapter2(2)偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)返回一.偏導(dǎo)數(shù)二.高階偏導(dǎo)數(shù)三.偏導(dǎo)數(shù)在經(jīng)濟分析中的應(yīng)用偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)目的要求:一.理解多元函數(shù)的偏導(dǎo)數(shù)的概念二.熟練掌握求一階和二階偏導(dǎo)數(shù)的方法重點:一.一階、二階偏導(dǎo)數(shù)計算三.熟練掌握偏導(dǎo)數(shù)
2026-01-05 07:37
【總結(jié)】一、復(fù)習與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義...y=(3x-2)2的導(dǎo)數(shù),那么我們可以把平方式展開,利用導(dǎo)數(shù)的四則運算法則求導(dǎo).然后能否用其它的辦法求導(dǎo)呢?又如我們知道函數(shù)y=1/x2的導(dǎo)數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導(dǎo)數(shù)又是什么呢?y?為了解決上面的問題
2025-04-28 23:00