【總結(jié)】秭歸縣屈原高中張鴻斌專題立幾問(wèn)題的向量解法高考復(fù)習(xí)建議傳統(tǒng)的立幾問(wèn)題是用立幾的公理和定理通過(guò)從“形”到“式”的邏輯推理,解決線與線、線與面、面與面的位置關(guān)系以及幾何體的有關(guān)問(wèn)題,常需作輔助線,但有時(shí)卻不易作出,而空間向量解立幾問(wèn)題則體現(xiàn)了“數(shù)”與“形”的結(jié)合,通過(guò)向量的代數(shù)計(jì)算解決問(wèn)題,無(wú)須添加輔助線。用空間向量解立幾問(wèn)題
2024-11-09 12:27
【總結(jié)】第三章空間向量與立體幾何人教A版數(shù)學(xué)第三章空間向量與立體幾何人教A版數(shù)學(xué)第三章空間向量與立體幾何人教A版數(shù)學(xué)1.知識(shí)與技能掌握空間向量的數(shù)乘運(yùn)算.理解共線向量,直線的方向向量和共面向量.2.過(guò)程與方法
2024-10-16 20:16
【總結(jié)】立體幾何中的向量方法—求空間角?立體幾何這一考點(diǎn)在廣東高考試卷中占有很大比例,11年19分12年18分13年24分。這些題目也是我們?nèi)?zhēng)取力求滿分的題目。主要考查三視圖問(wèn)題,點(diǎn)線面位置關(guān)系問(wèn)題,還有就是大題.大題主要有垂直、平行、角度、體積。對(duì)于角度問(wèn)題,一直是一個(gè)難點(diǎn)。大體有兩種求法,一類是傳統(tǒng)方法,一做(找)二證三求,另一種方
2025-06-16 12:13
【總結(jié)】2020年12月19日星期六用空間向量解決立體幾何問(wèn)題的步驟:(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問(wèn)題中涉及的點(diǎn)、直線、平面,把立體幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題;(2)通過(guò)向量運(yùn)算,研究點(diǎn)、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問(wèn)題;(3)把向量的運(yùn)算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量問(wèn)題)(進(jìn)行向量運(yùn)
2024-11-12 01:34
【總結(jié)】ZPZ空間“角度”問(wèn)題設(shè)直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復(fù)習(xí)引入①方向向量法將二面角轉(zhuǎn)化為二面角的兩個(gè)面的
2025-08-05 10:54
【總結(jié)】向量代數(shù)空間解析幾何定義:既有大小又有方向的量稱為向量.相等向量、負(fù)向量、向徑.零向量、向量的模單位向量、向量代數(shù)(2)向量的分解式:},,{zyxaaaa??.,,,,軸上的投影分別為向量在其中zyxaaazyxkajaiaazyx??????
2024-10-04 17:17
【總結(jié)】空間向量之應(yīng)用3利用空間向量求距離課本P42如果表示向量a的有向線段所在直線垂直于平面?,則稱這個(gè)向量垂直于平面?,記作a⊥?.如果a⊥?,那么向量a叫做平面?的法向量.?la課本P33已知向量ABa?和軸l,e是l上與l同方向的單位向量.作
2025-01-08 13:41
【總結(jié)】第一篇:《立體幾何VS空間向量》教學(xué)反思 我這節(jié)公開課的題目是《立體幾何VS空間向量》選題背景是必修2學(xué)過(guò)立體幾何而選修21又學(xué)到空間向量在立體幾何中的應(yīng)用。學(xué)生有先入為主的觀念,總想用舊方法卻解體...
2024-11-16 02:21
【總結(jié)】第一篇:立體幾何方法總結(jié) 一、線線平行: 用: 1、平幾(如:同位角、內(nèi)錯(cuò)角相等;常用分線段比值相等); 2、證線 線平行(公理4); 3、證線面平行; 4、求異面直線所成角。 證: ...
2024-11-12 18:00
【總結(jié)】空間向量在立幾中應(yīng)用空間向量在立體幾何中的應(yīng)用空間向量在立幾中應(yīng)用利用向量判斷位置關(guān)系利用向量可證明四點(diǎn)共面、線線平行、線面平行、線線垂直、線面垂直等問(wèn)題,其方法是通過(guò)向量的運(yùn)算來(lái)判斷,這是數(shù)形結(jié)合的典型問(wèn)題空間向量在立幾中應(yīng)用例1、在正方體AC1中,E、F分別是BB1、CD的中點(diǎn),求
2025-07-20 05:00
【總結(jié)】第一篇:立體幾何的證明方法 立體幾何的證明方法 1.線面平行的證明方法 2.兩線平行的證明方法 7、空間平行、垂直之間的轉(zhuǎn)化與聯(lián)系: 應(yīng)用判定定理時(shí),注意由“低維”到“高維”:“線線...
2024-11-15 05:58
【總結(jié)】歡迎交流唯一QQ1294383109希望大家互相交流空間向量與立體幾何一、選擇題1.若不同直線l1,l2的方向向量分別為μ,v,則下列直線l1,l2中既不平行也不垂直的是()A.μ=(1,2,-1),v=(0,2,4)B.μ=(3,0,-1),v=(0,0,2)C.μ=(0,2,-3)
2024-08-22 17:46
【總結(jié)】利用空間向量解決立體幾何問(wèn)題一:利用空間向量求空間角(1)兩條異面直線所成的夾角范圍:兩條異面直線所成的夾角的取值范圍是。向量求法:設(shè)直線的方向向量為,其夾角為,則有1.在正三棱柱ABC-A1B1C1,若AB=BB1,則AB1與C1B所成角的大小( )A.60° B.90°C.105°
2025-06-07 16:29
【總結(jié)】 (理)第3講 立體幾何中的向量方法 [考情考向·北京朝陽(yáng)期末導(dǎo)航] 空間向量在立體幾何中的應(yīng)用主要體現(xiàn)在利用空間向量解決立體幾何中的位置關(guān)系、空間角以及空間距離的計(jì)算等問(wèn)題,是每年北京朝陽(yáng)期末...
2025-04-03 02:18
【總結(jié)】第一篇:向量法在立體幾何中的運(yùn)用 龍?jiān)雌诳W(wǎng)://. 向量法在立體幾何中的運(yùn)用 作者:何代芬 來(lái)源:《中學(xué)生導(dǎo)報(bào)·教學(xué)研究》2013年第27期 摘要:在近幾年的高考中利用向量的模和夾角公式求...
2024-10-21 23:33