【總結(jié)】空間向量在立體幾何中的應(yīng)用【例1】已知三棱錐P-ABC中,PA⊥面ABC,AB⊥AC,PA=AC=AB,N為AB上一點(diǎn),AB=4AN,M,S分別為PB,BC的中點(diǎn).(Ⅰ)證明:CM⊥SN;(Ⅱ)求SN與平面CMN所成角的大小.證明:設(shè)PA=1,以A為原點(diǎn),射線AB,AC,AP分別為x,y,z軸正向建立空間直角坐標(biāo)系如圖.則P(0,0,1),C(0,1,0),B
2024-08-27 16:48
【總結(jié)】1用空間向量處理立體幾何的問題立體幾何著重的是研究點(diǎn)、線、面之間的關(guān)系,研究空間三種位置關(guān)系(即空間直線與直線、直線與平面、平面與平面)以及三種角(異面直線所成的角、直線與平面所成的角和二面角)的計(jì)算。自上海高考試卷內(nèi)容改革以來,純粹用立體幾何的公理、定理來證明或計(jì)算立體幾何問題越來越少,而借助于向量的計(jì)算方法來處理立體幾何的問題卻越來越多。本講座就是詳細(xì)
2024-09-05 17:12
【總結(jié)】空間向量與立體幾何解答題精選1已知四棱錐的底面為直角梯形,,底面,且,,是的中點(diǎn)(Ⅰ)證明:面面;(Ⅱ)求與所成的角;(Ⅲ)求面與面所成二面角的大小證明:以為坐標(biāo)原點(diǎn)長(zhǎng)為單位長(zhǎng)度,如圖建立空間直角坐標(biāo)系,則各點(diǎn)坐標(biāo)為(Ⅰ)證明:因由題設(shè)知,且與是平面內(nèi)的兩條相交直線,由此得面又在面上,故面⊥面(Ⅱ)解:因(Ⅲ)解:在上取一點(diǎn)
2025-06-23 04:04
【總結(jié)】空間向量與立體幾何經(jīng)典題型與答案1已知四棱錐的底面為直角梯形,,底面,且,,是的中點(diǎn)(Ⅰ)證明:面面;(Ⅱ)求與所成的角;(Ⅲ)求面與面所成二面角的大小證明:以為坐標(biāo)原點(diǎn)長(zhǎng)為單位長(zhǎng)度,如圖建立空間直角坐標(biāo)系,則各點(diǎn)坐標(biāo)為(Ⅰ)證明:因由題設(shè)知,且與是平面內(nèi)的兩條相交直線,由此得面又在面上,故面⊥面(Ⅱ)解:因(Ⅲ)解:在
2025-06-18 13:50
【總結(jié)】第三章空間向量與立體幾何單元測(cè)試(時(shí)間:90分鐘 滿分:120分)第Ⅰ卷(選擇題,共50分)一、選擇題:本大題共10小題,每小題5分,共50分.1.以下四組向量中,互相平行的組數(shù)為( )①a=(2,2,1),b=(3,-2,-2);②a=(8,4,-6),b=(4,2,-3);③a=(0,-1,1),b=(0,3,-3);④a=(-3,2,0),b=(4,-3,3)
2025-06-23 18:25
【總結(jié)】一對(duì)一授課教案學(xué)員姓名:年級(jí):所授科目:上課時(shí)間:年月日時(shí)分至?xí)r分共小時(shí)老師簽名學(xué)生簽名教學(xué)主題空間向量與立體幾何上次作業(yè)檢查本次上課表現(xiàn)本
2025-06-23 04:23
【總結(jié)】空間向量與立體幾何單元測(cè)試題一、選擇題1、若,,是空間任意三個(gè)向量,,下列關(guān)系式中,不成立的是()A.B.C.D.2、給出下列命題①已知,則;②A、B、M、N為空間四點(diǎn),若不構(gòu)成空間的一個(gè)基底,則A、B、M、N共面;③已知,則與任何向量不構(gòu)成空間的一個(gè)基底;④已知是空
2025-03-25 06:42
【總結(jié)】空間向量與立體幾何單元檢測(cè)題一、選擇題:1、若,,是空間任意三個(gè)向量,,下列關(guān)系式中,不成立的是()A、B、C、D、2、已知向量=(1,1,0),則與共線的單位向量() A、(1,1,0) B、(0,1,0) C、(,,0)D、(1,1,1)3、若為任意
2025-01-15 05:33
【總結(jié)】高中數(shù)學(xué)選修(2-1)空間向量與立體幾何測(cè)試題一、選擇題1.若把空間平行于同一平面且長(zhǎng)度相等的所有非零向量的始點(diǎn)放置在同一點(diǎn),則這些向量的終點(diǎn)構(gòu)成的圖形是( ?。粒粋€(gè)圓 B.一個(gè)點(diǎn) C.半圓 D.平行四邊形答案:A2.在長(zhǎng)方體中,下列關(guān)于的表達(dá)中錯(cuò)誤的一個(gè)是( ?。粒? B.C. D.答案:B3.若為任意向量,,下列等式不一
2025-06-23 03:41
【總結(jié)】分類突破題型一、利用向量證明平行與垂直例1如圖所示,已知直三棱柱ABC—A1B1C1中,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分別為B1A、
2024-08-14 10:54
【總結(jié)】空間向量在立幾中應(yīng)用空間向量在立體幾何中的應(yīng)用空間向量在立幾中應(yīng)用利用向量判斷位置關(guān)系利用向量可證明四點(diǎn)共面、線線平行、線面平行、線線垂直、線面垂直等問題,其方法是通過向量的運(yùn)算來判斷,這是數(shù)形結(jié)合的典型問題空間向量在立幾中應(yīng)用例1、在正方體AC1中,E、F分別是BB1、CD的中點(diǎn),求
2024-07-29 06:40
【總結(jié)】2122020高考數(shù)學(xué)一輪復(fù)習(xí)單元練習(xí)--空間向量與立體幾何I卷一、選擇題1.點(diǎn)M在z軸上,它與經(jīng)過坐標(biāo)原點(diǎn)且方向向量為s=(1,-1,1)的直線l的距離為6,則點(diǎn)M的坐標(biāo)是()A.(0,0,±2)B.(0,0,±3)C.(0,0,±3)
2024-08-19 20:09
【總結(jié)】立體幾何中的向量方法—求空間角?立體幾何這一考點(diǎn)在廣東高考試卷中占有很大比例,11年19分12年18分13年24分。這些題目也是我們?nèi)?zhēng)取力求滿分的題目。主要考查三視圖問題,點(diǎn)線面位置關(guān)系問題,還有就是大題.大題主要有垂直、平行、角度、體積。對(duì)于角度問題,一直是一個(gè)難點(diǎn)。大體有兩種求法,一類是傳統(tǒng)方法,一做(找)二證三求,另一種方
2025-06-16 12:13
【總結(jié)】利用空間向量解決立體幾何問題數(shù)學(xué)專題二學(xué)習(xí)提綱二、立體幾何問題的類型及解法1、判斷直線、平面間的位置關(guān)系;(1)直線與直線的位置關(guān)系;(2)直線與平面的位置關(guān)系;(3)平面與平面的位置關(guān)系;2、求解空間中的角度;3、求解空間中的距離。1、直線的方向向量;2、平面的法向量。
2024-11-25 22:52
【總結(jié)】空間向量坐標(biāo)法---解決立體幾何問題一.建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,能求點(diǎn)的坐標(biāo);1、三條直線交于一點(diǎn)且兩兩垂直;方便求出各點(diǎn)的坐標(biāo)。2、如何求出點(diǎn)的坐標(biāo):先求線段的長(zhǎng)度(特別是軸上線段):由已知條件可全部求出來;若不能,則可先設(shè)出來。(1)軸上的點(diǎn)--------X軸--(a,0,0),y軸--(0,b,0),z軸--(0,0,c)(2)三個(gè)坐標(biāo)面上的點(diǎn)-