【總結(jié)】第一篇:實際問題與二次函數(shù)教學(xué)設(shè)計 人教版《實際問題與二次函數(shù)(第2課時)》教學(xué)設(shè)計 【教材分析】 本節(jié)的問題涉及求函數(shù)的最大值,要先求出函數(shù)的解析式,再求出使用函數(shù)值最大的自變量值,在此問題的...
2024-11-13 12:08
【總結(jié)】生活是數(shù)學(xué)的源泉,我們是數(shù)學(xué)學(xué)習(xí)的主人.2.二次函數(shù)y=ax2+bx+c的圖象是一條,它的對稱軸是,頂點坐標(biāo)是.當(dāng)a0時,拋物線開口向,有最點,函數(shù)有最值,是
2024-12-08 13:56
【總結(jié)】《實際問題與二次函數(shù)》數(shù)學(xué)教學(xué)反思 這節(jié)課我是采用先讓學(xué)生按照學(xué)案的提示,自主預(yù)習(xí)課本,受到課本所給出的分析過程的思維限制,很容易把問題解決了,但沒有放手讓學(xué)生從不同角度去嘗試建立坐標(biāo)系...
2024-12-03 01:57
【總結(jié)】實際問題與二次函數(shù)—知識講解(提高)【學(xué)習(xí)目標(biāo)】,培養(yǎng)分析問題、解決問題的能力和應(yīng)用數(shù)學(xué)的意識.,深刻理解二次函數(shù)是刻畫現(xiàn)實世界的一個有效的數(shù)學(xué)模型.【要點梳理】要點一、列二次函數(shù)解應(yīng)用題 列二次函數(shù)解應(yīng)用題與列整式方程解應(yīng)用題的思路和方法是一致的,不同的是,學(xué)習(xí)了二次函數(shù)后,表示量與量的關(guān)系的代數(shù)式是含有兩個變量的等式.對于應(yīng)用題要注意以下步驟:
2025-06-24 04:19
【總結(jié)】例1.某涵洞是拋物線形,它的截面如圖所示,現(xiàn)測得水面寬1.6m,涵洞頂點O到水面的距離為2.4m,在圖中直角坐標(biāo)系內(nèi),涵洞所在的拋物線的函數(shù)關(guān)系式是什么?分析:如圖,以AB的垂直平分線為y軸,以過點O的y軸的垂線為x軸,建立了直角坐標(biāo)系.這時,涵洞所在的拋物線的頂點在原點,對稱軸是y軸
2024-10-19 16:02
【總結(jié)】二次函數(shù)實際問題訓(xùn)練-橋洞專題1、圖6(1)是一個橫斷面為拋物線形狀的拱橋,當(dāng)水面在l時,拱頂(拱橋洞的最高點)離水面2m,水面寬4m.如圖6(2)建立平面直角坐標(biāo)系,則拋物線的關(guān)系式是( ?。〢.B.C.D.圖6(1)圖6(2)2如圖1是泰州某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點與水面的距離
2025-03-24 06:26
【總結(jié)】第一篇:實際問題與二次函數(shù)教學(xué)反思2 《實際問題與二次函數(shù)——面積問題》的教學(xué)反 思 今天很高興來上一堂《實際問題與二次函數(shù)(第1課)》的異地教學(xué)評選課,對我來說是第一次,所以上課前一直都有點擔(dān)...
2024-10-25 20:22
【總結(jié)】九年級上冊實際問題與二次函數(shù)(第3課時)?二次函數(shù)是單變量最優(yōu)化問題的數(shù)學(xué)模型,如生活中涉及的求最大利潤,最大面積等.這體現(xiàn)了數(shù)學(xué)的實用性,是理論與實踐結(jié)合的集中體現(xiàn).本節(jié)課主要研究建立坐標(biāo)系解決實際問題.課件說明?學(xué)習(xí)目標(biāo):能夠分析和表示實際問題中變量之間的二次函數(shù)關(guān)系,正確建立坐標(biāo)系,并運用二次函
2024-11-21 00:05
【總結(jié)】實際問題與二次函數(shù)(第3課時)倍速課時學(xué)練探究3圖中是拋物線形拱橋,當(dāng)水面在l時,拱頂離水面2m,水面寬4m,水面下降1m,水面寬度增加多少?分析:我們知道,二次函數(shù)的圖象是拋物線,建立適當(dāng)?shù)淖鴺?biāo)系,就可以求出這條拋物線表示的二次函數(shù),為解題簡便,以拋物線的頂點為原
【總結(jié)】第二十二章二次函數(shù)實際問題與二次函數(shù)第1課時實際問題二次函數(shù)(一)課前預(yù)習(xí)A.在利用二次函數(shù)求實際問題的最大(或最?。┲禃r,既要考慮自變量的__________,還要考慮實際問題的多種情況.B.二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標(biāo)是__________,對稱軸是__________,當(dāng)
2025-06-16 01:08
【總結(jié)】一元二次方程的應(yīng)用第二課時:面積問題要設(shè)計一本書的封面,封面長27㎝,寬21㎝,正中央是一個與整個封面長寬比例相同的矩形,如果要使四周的邊襯所占面積是封面面積的四分之一,上、下邊襯等寬,左、右邊襯等寬,應(yīng)如何設(shè)計四周邊襯的寬度?分析:這本書的長寬之比是9:7,依題知正中央的矩形兩邊之比也為9
2024-11-23 12:12
【總結(jié)】第二十二章二次函數(shù)第1課時實際問題二次函數(shù)(一)實際問題與二次函數(shù)課堂小測本易錯核心知識循環(huán)練1.(10分)二次函數(shù)y=x2-2x-3的圖象與y軸的交點坐標(biāo)是()A.(0,-3)B.(1,0)C.(1,-4)D.(3,0)A課堂小測
2025-06-12 01:15
【總結(jié)】實際問題與二次函數(shù)(1)教學(xué)目標(biāo):1.使學(xué)生掌握用待定系數(shù)法由已知圖象上一個點的坐標(biāo)求二次函數(shù)y=ax2的關(guān)系式2.使學(xué)生掌握用待定系數(shù)法由已知圖象上三個點的坐標(biāo)求二次函數(shù)的關(guān)系式。3.讓學(xué)生體驗二次函數(shù)的函數(shù)關(guān)系式的應(yīng)用,提高學(xué)生用數(shù)學(xué)意識。重點難點:重點:已知二次函數(shù)圖象上一個點的坐標(biāo)或三個點的
2024-12-02 09:50
【總結(jié)】課題:(1)教學(xué)目標(biāo):1、知識與技能:經(jīng)歷數(shù)學(xué)建模的基本過程.2、方法與技能:會運用二次函數(shù)求實際問題中的最大值或最小值.3、情感、態(tài)度與價值觀:體會二次函數(shù)是一類最優(yōu)化問題的重要數(shù)學(xué)模型,感受數(shù)學(xué)的應(yīng)用價值.教學(xué)重點和難點:重點:二次函數(shù)在最優(yōu)化問題中的應(yīng)用.難點:例1是從現(xiàn)實問題中建立二
2024-11-20 03:10