【總結(jié)】綜合檢測(二)一、選擇題1.下列結(jié)論錯誤的是()A.若“p∧q”與“綈p∨q”均為假命題,則p真q假B.命題“?x∈R,x2-x0”的否定是“?x∈R,x2-x≤0”C.“x=1”是“x2-3x+2=0”充分不必要條件
2024-12-03 11:30
【總結(jié)】利用導數(shù)研究函數(shù)的極值(二)一、基礎過關(guān)1.函數(shù)f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分別是()A.f(2),f(3)B.f(3),f(5)C.f(2),f(5)D.f(5),f(3)2.f(x)=x3-3x2+2在區(qū)間[-1,1]上的最大值
2024-11-19 10:30
【總結(jié)】命題的四種形式一、基礎過關(guān)1.設a,b是向量,命題“若a=-b,則|a|=|b|”的逆命題是()A.若a≠-b,則|a|≠|(zhì)b|B.若a=-b,則|a|≠|(zhì)b|C.若|a|≠|(zhì)b|,則a≠-bD.若|a|=|b|,則a=-b2.命題“若a>
【總結(jié)】利用導數(shù)研究函數(shù)的極值(一)一、基礎過關(guān)1.函數(shù)y=f(x)的定義域為(a,b),y=f′(x)的圖象如圖,則函數(shù)y=f(x)在開區(qū)間(a,b)內(nèi)取得極小值的點有()A.1個B.2個C.3個D.4個2.下列關(guān)于函數(shù)的極值的
【總結(jié)】§導數(shù)的運算常數(shù)與冪函數(shù)的導數(shù)導數(shù)公式表一、基礎過關(guān)1.下列結(jié)論中正確的個數(shù)為()①y=ln2,則y′=12②y=1x2,則y′|x=3=-227③y=2x,則y′=2xln2④y=log2x,則y′=1xln2A.0
【總結(jié)】橢圓及其標準方程第一課時你能列舉幾個生活中見過的橢圓形狀的物品嗎?請同學們將一根無彈性的細繩兩端分別系在兩顆圖釘下部,并將圖釘固定,用筆繃緊細繩在紙上移動,觀察畫出的軌跡是什么曲線。繪圖紙上的三個問題1.視筆尖為動點,兩個圖釘為定點,動點到兩定點距離之和符合什么條件?其軌跡如
2024-11-17 17:38
【總結(jié)】江蘇省建陵高級中學2020-2020學年高中數(shù)學橢圓的標準方程(1)導學案(無答案)蘇教版選修1-1【學習目標】,了解橢圓標準方程的推導方法;寫出橢圓的焦點坐標,會用待定系數(shù)法求橢圓的方程;【課前預習】1、橢圓定義的理解:2、橢圓的標準方程:3、橢圓的標準方程的推導:
2024-11-20 00:31
【總結(jié)】江蘇省漣水縣第一中學高中數(shù)學橢圓的標準方程(2)教學案蘇教版選修1-1教學目標:1.掌握橢圓的標準方程及求標準方程的方法.[2.能根據(jù)橢圓的標準方程判定其焦點所在位置.教學重點:求橢圓標準方程的方法及根據(jù)方程確定焦點位置.教學難點:求橢圓標準方程的方法.教學過程:一、復習導引1.已知橢圓的方程為19252
2024-12-04 18:02
【總結(jié)】拋物線的幾何性質(zhì)(一)一、基礎過關(guān)1.設點A為拋物線y2=4x上一點,點B(1,0),且|AB|=1,則A的橫坐標的值為()A.-2B.0C.-2或0D.-2或22.以x軸為對稱軸的拋物線的通徑(過焦點且與x軸垂直的弦)長為8,若拋物線的頂點在坐標原點,則其方程為
【總結(jié)】§橢圓的簡單幾何性質(zhì)課時安排5課時從容說課本節(jié)主要是通過對橢圓的標準方程的討論,研究橢圓的幾何性質(zhì),而這種依據(jù)曲線的方法去討論曲線的幾何性質(zhì)是學習解析幾何以來的第一次,因此在教學中,不僅要注意對研究結(jié)果的理解和應用,而且應注意對研究方法的學習.由于學生己對由函數(shù)的解析式研究函數(shù)的性質(zhì)或其圖象的特點比較熟悉,所以在學習由
2024-12-08 22:39
【總結(jié)】推出與充分條件、必要條件(二)一、基礎過關(guān)1.“x,y均為奇數(shù)”是“x+y為偶數(shù)”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件2.對于非零向量a,b,“a+b=0”是“a∥b”的()A.充分不必要條件
【總結(jié)】第二章圓錐曲線與方程§1橢圓橢圓及其標準方程課時目標,經(jīng)歷從具體情境中抽象出橢圓的過程、橢圓標準方程的推導與化簡過程.、標準方程及幾何圖形.1.橢圓的概念:平面內(nèi)到兩個定點F1,F(xiàn)2的距離之和等于________(大于|F1F2|)的點的集合叫作________.這兩個定點叫作橢圓的
2024-12-05 01:56
【總結(jié)】洪澤外國語中學程懷宏如何精確地設計、制作、建造出現(xiàn)實生活中這些橢圓形的物件呢?生活中的橢圓一.問題情境?動畫演示:“神六”飛行注意:橢圓定義中容易遺漏的三處地方:(1)必須在平面內(nèi).(2)兩個定點---兩點間距離確定.(3)繩長--軌跡上任意點到兩定點
2024-11-18 08:56
【總結(jié)】橢圓的標準方程第2課時橢圓的定義?平面內(nèi)與兩個定點F1,F(xiàn)2的距離的和等于常數(shù)(大于F1F2)的點的軌跡叫做橢圓。?這兩個定點F1、F2叫做橢圓的焦點,兩個焦點間的距離叫做橢圓的焦距。不同點相同點定義參數(shù)y1F2FPBx
2024-11-18 15:26
【總結(jié)】上圖所示是一些人造衛(wèi)星的繞地運行圖,這些衛(wèi)星的運行軌道,絕大多數(shù)是以地球的中心為一個焦點的橢圓,科學工作者常常根據(jù)近地距離與遠地距離來求這些衛(wèi)星運行軌道橢圓的近似方程。一.課標解讀:,初步掌握通過方程研究曲線性質(zhì)的方法。,掌握標準方程中的a,b,c,e的意義及a,b,c,e之間的關(guān)系。。二.學習目標:重點:利用橢
2024-11-17 11:59