【摘要】章末檢測一、選擇題1.物體運動的方程為s=14t4-3,則t=5時的瞬時速度為()A.5B.25C.125D.6252.函數(shù)y=x2cosx的導數(shù)為()A.y′=2xcosx-x2sinxB.y′=2xcosx+x
2024-11-19 10:30
【摘要】定義與方程罐車的橫截面數(shù)學實驗?[1]取一條細繩,?[2]把它的兩端固定在板上的兩點F1、F2?[3]用鉛筆尖(M)把細繩拉緊,在板上慢慢移動看看畫出的圖形F1F2M觀察做圖過程:[1]繩長應當大于F1、F2之間的距離。[2]
2024-11-17 20:06
【摘要】橢圓的標準方程一、填空題1.方程x225-m+y216+m=1表示焦點在y軸上的橢圓,則m的取值范圍是________.2.橢圓x2-m+y2-n=1(m5),它的兩焦點分
2024-11-15 17:58
【摘要】第7課時雙曲線及其標準方程.、幾何圖形.a,b,c的關系,并能利用雙曲線中a,b,c的關系處理“焦點三角形”中的相關運算.如圖所示,某農場在M處有一堆肥料沿道路MA或MB送到稻田ABCD中去,已知|MA|=6,|MB|=8,|BC|=3,∠AMB=90°,能否在
2024-12-05 01:49
【摘要】(三)【學習目標】1.進一步熟悉橢圓的定義與標準方程;2.學會用定義法求曲線的方程奎屯王新敞新疆3.使學生掌握轉移法(也稱代換法,中間變量法,相關點法)求動點軌跡方程的方法與橢圓有關問題的解決奎屯王新敞新疆【自主檢測】已知B,C是兩個定點,||6BC?,且ABC?的周長等于16,求頂點A的軌跡方程.
2024-11-19 23:25
【摘要】PF2F1彗星太陽橢圓及其標準方程(一)【學習目標】1.理解橢圓的定義奎屯王新敞新疆明確焦點、焦距的概念奎屯王新敞新疆2.熟練掌握橢圓的標準方程,會根據(jù)所給的條件畫出橢圓的草圖并確定橢圓的標準方程奎屯王新敞新疆【自主學習】1997年初,中國科學院紫金山天文臺發(fā)布了一條消息,從1997年2月中旬起,海爾
2024-12-05 01:52
【摘要】導數(shù)的四則運算法則一、基礎過關1.下列結論不正確的是()A.若y=3,則y′=0B.若f(x)=3x+1,則f′(1)=3C.若y=-x+x,則y′=-12x+1D.若y=sinx+cosx,則y′=cosx+sinx2.函數(shù)y=
【摘要】2020/12/25§(一)2020/12/25復習思考?、標準方程是什么??平面上到兩個定點的距離的和(2a)等于定長(大于|F1F2|)的點的軌跡叫橢圓。?定點F1、F2叫做橢圓的焦點。?兩焦點之間的距離叫做焦距(2c)。)0(12222????bab
2024-11-18 12:09
【摘要】橢圓的標準方程(說課稿)一、教材分析1、地位及作用圓錐曲線是一個重要的幾何模型,有許多幾何性質,這些性質在日常生活、生產和科學技術中有著廣泛的應用。同時,圓錐曲線也是體現(xiàn)數(shù)形結合思想的重要素材。推導橢圓的標準方程的方法對雙曲線、拋物線方程的推導具有直接的類比作用,為學習雙曲線、拋物線內容提供了基本模式和理論基礎。因此本節(jié)課具有承前啟后的作用,是本章的重點內容。2、教
2025-06-07 23:16
【摘要】第二章圓錐曲線與方程,第一頁,編輯于星期六:點三十一分。,2.1橢圓2.1.1橢圓及其標準方程,第二頁,編輯于星期六:點三十一分。,,梳理知識夯實基礎,自主學習導航,第三頁,編輯于星期六:點三十一分。...
2024-10-22 18:44
【摘要】復習::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當焦點在X軸上時當焦點在Y軸上時)0(12222????babyax)0(12222????
2024-11-18 12:15
【摘要】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學第1課時橢圓的幾何性質課后知能檢測新人教B版選修1-1一、選擇題1.(2021·濟南高二檢測)若橢圓的長軸長為10,焦距為6,則橢圓的標準方程為()A.x2100+y236=1225+y216=1C.
2024-12-03 11:30
【摘要】第一課時命題及其關系(一)教學要求:了解命題的概念,會判斷一個命題的真假,并會將一個命題改寫成“若p,則q”的形式.教學重點:命題的改寫.教學難點:命題概念的理解.教學過程:一、復習準備:閱讀下列語句,你能判斷它們的真假嗎?(1)矩形的對角線相等;(2)312?;(3)
2024-11-30 04:03
【摘要】-歸納推理歌德巴赫猜想:“任何一個不小于6的偶數(shù)都等于兩個奇數(shù)之和”即:偶數(shù)=奇質數(shù)+奇質數(shù)哥德巴赫猜想(GoldbachConjecture)世界近代三大數(shù)學難題之一。哥德巴赫是德國一位中學教師,也是一位著名的數(shù)學家,生于1690年,1725年當選為俄國彼得堡科學院院士。1742年,哥德巴赫在教學中發(fā)現(xiàn),每個
2024-11-18 15:24
【摘要】數(shù)學:2.1《橢圓》第一課時F2F1M只需將x,y交換位置即得橢圓的標準方程.xyo如果以橢圓的焦點所在直線為y軸,且F1、F2的坐標分別為(0,-c)和(0,c),a、b的含義都不變,那么橢圓又有怎樣的標準方程呢?如果已知橢圓的標準方程
2024-11-17 17:38