【總結(jié)】第一篇:均值不等式證明 均值不等式證明 一、已知x,y為正實(shí)數(shù),且x+y=1求證 xy+1/xy≥17/ 41=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥ 2當(dāng)且僅當(dāng)xy=...
2024-11-05 18:15
【總結(jié)】第一篇:均值不等式教案 3.2均值不等式教案(3) (第三課時) 教學(xué)目標(biāo): 了解均值不等式在證明不等式中的簡單應(yīng)用 教學(xué)重點(diǎn): 了解均值不等式在證明不等式中的簡單應(yīng)用 教學(xué)過程 例 ...
2024-11-05 18:41
【總結(jié)】12不等式的定義:用不等號連接兩個解析式所得的式子,叫做不等式.說明:(1)不等號的種類:>、<、≥(≮)、≤(≯)、≠.(2)解析式是指:代數(shù)式和超越式(包括指數(shù)式、對數(shù)式和三角式等)(3)不等式研究的范圍是實(shí)數(shù)集R.3對于任意兩個實(shí)數(shù)a、b,在a>b,a=b,a
2024-11-17 19:45
【總結(jié)】§二元一次不等式(組)與簡單的線性規(guī)劃問題3.二元一次不等式(組)所表示的平面區(qū)域自主學(xué)習(xí)知識梳理1.二元一次不等式(組)的概念(1)含有________未知數(shù),并且未知數(shù)的次數(shù)是____的不等式叫做二元一次不等式.由幾個二元一次不等式組成的不等式組叫做二元一次不等式組.(2)滿足二元一
2024-11-19 03:21
【總結(jié)】安徽理工大學(xué)畢業(yè)論文本科畢業(yè)論文關(guān)于均值不等式的探討DISCUSSIONONINEQUALITY學(xué)院(部):理學(xué)院專業(yè)班級:數(shù)學(xué)與應(yīng)用數(shù)學(xué)07-1學(xué)生姓名:吳興奎指導(dǎo)教師:周小紅講師
2024-08-14 04:52
【總結(jié)】第一篇:用均值不等式證明不等式 用均值不等式證明不等式 【摘要】:不等式的證明在競賽數(shù)學(xué)中占有重要地位.本文介紹了用均值不等式證明幾個不等式,我們在證明不等式時,常用到均值不等式。要求我們要認(rèn)真分...
2024-10-28 10:42
【總結(jié)】第一篇:均值不等式教案 §均值不等式 【教學(xué)目標(biāo)】 【教學(xué)重點(diǎn)】 掌握均值不等式 【教學(xué)難點(diǎn)】 利用均值不等式證明不等式或求函數(shù)的最值,【教學(xué)過程】 一、均值不等式: 均值定理...
【總結(jié)】第3課時均值不等式1.均值不等式基礎(chǔ)知識梳理2.常用的幾個重要不等式(1)a2+b2≥(a,b∈R);(2)ab(a+b2)2(a,b∈R);(3)a2+b22(a+b2
2024-08-02 03:54
【總結(jié)】均值不等式應(yīng)用(技巧)一.均值不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”);若,則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”
2024-08-01 23:59
【總結(jié)】課題:基本不等式科目:數(shù)學(xué)教學(xué)對象:高一學(xué)生課時:1課時提供者:李文毅單位:大同四中一、教學(xué)內(nèi)容分析?本節(jié)課《基本不等式》是《數(shù)學(xué)必修五(人教A版)》第三章第四節(jié)的內(nèi)容,主要內(nèi)容是通過現(xiàn)實(shí)問題進(jìn)行數(shù)學(xué)實(shí)驗(yàn)猜想,構(gòu)造數(shù)學(xué)模型,得到均值不等式;并通過在學(xué)習(xí)算術(shù)平均數(shù)與幾何平均數(shù)的定義基礎(chǔ)上,理解均值不等式的幾何解釋;,對于不等式的證明及利用均值不等式求
2025-04-17 00:20
【總結(jié)】如果a,b∈R,那么a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時,當(dāng)時,當(dāng)abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2024-11-18 08:48
【總結(jié)】第一篇:57均值不等式與不等式的實(shí)際應(yīng)用 學(xué)案五十七:均值不等式與不等式的實(shí)際應(yīng)用 命題:閆桂女劉麗娟審核:【考綱要求】 1、了解均值不等式的證明過程 2、會用均值不等式解決簡單的最大(?。┲?..
2024-11-03 14:01
【總結(jié)】......一、選擇題1.若,且,那么的最小值為(???)A.B.C.D.2.設(shè)若的最小值( )A.
2025-03-25 00:08
【總結(jié)】第三章不等式§不等關(guān)系與不等式自主學(xué)習(xí)知識梳理1.比較實(shí)數(shù)a,b的大小(1)文字?jǐn)⑹鋈绻鸻-b是正數(shù),那么a________b;如果a-b為______,那么a=b;如果a-b是負(fù)數(shù),那么a______b,反之也成立.(2)符號表示a-b0?
2024-11-19 23:20
【總結(jié)】均值不等式的綜合應(yīng)用22,0,,222abababBabababCDabABCD????????若A=,,,,試比較、、、的大小。CABD???一.均值定理在比較大小中的應(yīng)用:11,lglg,(lglg),2lg(