【總結(jié)】-*-第二章圓錐曲線與方程-*-§1橢圓-*-橢圓及其標準方程首頁XINZHIDAOXUE新知導(dǎo)學(xué)ZHONGNANTANJIU重難探究DANGTANGJIANCE當堂檢測學(xué)習(xí)目標思維脈絡(luò)1.了解橢圓的實際背景,理解橢圓、焦點、焦距的定義.2.掌
2024-11-16 23:27
【總結(jié)】城郊中學(xué)高二數(shù)學(xué)組:代俊俊如何精確地設(shè)計、制作、建造出現(xiàn)實生活中這些橢圓形的物件呢?生活中的橢圓一.課題引入:橢圓的畫法PF2F1注意:橢圓定義中容易遺漏的三處地方:(1)必須在平面內(nèi);(2)兩個定點---兩點間距離確定;(常記作2c)(3)繩長---軌跡上任
2024-11-18 00:48
【總結(jié)】2020/12/242020/12/24復(fù)習(xí)回顧平面內(nèi),動點p到兩個定點F1F2的距離和是常數(shù),p形成的軌跡?12122PFPFaFF???12122PFPFaFF???12122PFPFaFF???無軌跡.軌跡為線段軌跡為橢圓2020/12/24
2024-11-17 11:59
【總結(jié)】復(fù)習(xí)回顧:?1求動點軌跡方程的一般步驟:(1)建立適當?shù)淖鴺讼担糜行驅(qū)崝?shù)對表示曲線上任意一點M的坐標;(2)寫出適合條件P的點M的集合;(可以省略,直接列出曲線方程)(3)用坐標表示條件P(M),列出方程(5)證明以化簡后的方程的解為坐標的點都是曲線上的點(可以省略不寫,
2024-11-18 08:56
【總結(jié)】已知方程表示焦點在x軸上的橢圓,則m的取值范圍是.22xy+=14m(0,4)變式:已知方程表示焦點在y軸上的橢圓,則m的取值范圍是.22xy+=1m
【總結(jié)】平面內(nèi)到兩個定點F1、F2的距離的和等于常數(shù)(大于F1F2)的點的軌跡叫橢圓定點F1、F2叫做橢圓的焦點。說明:注意:ac0F1F2P定義:│PF1│+│PF2│=2a│F1F2│=2c——焦距oyx?1F
2024-11-18 01:22
【總結(jié)】《橢圓的幾何性質(zhì)》教學(xué)目標?知識與技能目標?了解用方程的方法研究圖形的對稱性;理解橢圓的范圍、對稱性及對稱軸,對稱中心、離心率、頂點的概念;掌握橢圓的標準方程、會用橢圓的定義解決實際問題;通過例題了解橢圓的第二定義,準線及焦半徑的概念,利用信息技術(shù)初步了解橢圓的第二定義.?過程與方法目標?(1)復(fù)習(xí)與引入過程
2025-07-24 18:14
【總結(jié)】雙曲線及其標準方程(1)復(fù)習(xí)與問題1,橢圓的第一定義是什么?平面內(nèi)與兩定點F1,F(xiàn)2的距離的和等于常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓。F1F2MM思考到平面上兩定點F1,F(xiàn)2的距離之差(小于|F1F2|)為非零常數(shù)的點的軌跡是什么?
2025-01-14 07:30
【總結(jié)】事例:主人邀請張三、李四、王五三個人吃飯聊天,時間到了,只有張三和李四兩人準時趕到,王五打來電話說:“臨時有急事,不能來了?!敝魅寺犃穗S口說了句:“你看看,該來的沒有來。”張三聽了,臉色一沉,起來一聲不吭地走了;主人愣了片刻,又道:“哎,不該走的又走了?!崩钏穆犃舜笈?,拂袖而去。你能用邏輯學(xué)原理解釋這兩人離去的原因嗎?這就是今天我們來學(xué)習(xí)常
2024-11-18 12:16
【總結(jié)】想一想?在我們實際生活中,同學(xué)們見過橢圓嗎?能舉出一些實例嗎?生活中的橢圓——仙女座星系星系中的橢圓我們一起來看看實驗操作(1)在畫圖的過程中,細繩的兩端點的位置是固定的還是運動的?(2)在畫圖的過程中,繩子的長度變了沒有?說明了什么?(3)在畫圖的過程中,繩子長度與兩定點距離大小有怎樣的關(guān)
2024-11-24 16:08
【總結(jié)】橢圓及其標準方程同步練習(xí)一,選擇題:1.方程Ax2+By2=C表示橢圓的條件是()(A)A,B同號且A≠B(B)A,B同號且C與異號(C)A,B,C同號且A≠B(D)不可能表示橢圓2.已知橢圓方程為221499xy??中,F(xiàn)1,F2分別為它的兩個焦點,則下列
2024-12-05 06:35
【總結(jié)】一、選擇題:1.已知點)0,4(1?F和)0,4(2F,曲線上的動點P到1F、2F的距離之差為6,則曲線方程為()A.17922??yxB.)0(17922???yxyC.17922??yx或17922??xyD.)0(17922???xyx
2024-11-16 00:54
【總結(jié)】y(第二課時)xoMF2F1(第二課時)雙曲線及其標準方程系數(shù)哪個為正,焦點就在哪個軸上平面內(nèi)與兩個定點F1,F(xiàn)2的距離的差的絕對值等于常數(shù)(小于|F1F2|)的點的軌跡????12-,0,0,F(xiàn)cFc????1????20,-0,,F(xiàn)cFc標準方程
2024-11-19 16:17
【總結(jié)】§雙曲線雙曲線及其標準方程一、基礎(chǔ)過關(guān)1.若方程y24-x2m+1=1表示雙曲線,則實數(shù)m的取值范圍是()A.-1-1C.m3D.m-12.雙曲線5x2+ky2=5的一個焦點是(6,0),
2024-11-19 10:30
【總結(jié)】公開課教案授課人:佟成軍授課內(nèi)容:《橢圓(二)》授課時間:授課對象:高二(9)全體學(xué)生聽課人:全市各學(xué)校高二數(shù)學(xué)教師部門負責人簽名:
2025-07-24 02:15