【總結】雙曲線及其標準方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復習|M
2024-11-19 16:21
【總結】江蘇省漣水縣第一中學高中數(shù)學橢圓的幾何性質(zhì)(2)教學案蘇教版選修1-1教學目標:1.進一步熟悉橢圓的基本幾何性質(zhì):范圍、對稱性、頂點、長軸、短軸,研究并理解橢圓的離心率的概念.來2.掌握橢圓標準方程中a,b,c,e的幾何意義及相互關系.教學重點:橢圓的幾何性質(zhì)——范圍、對稱性、頂點、離心率.教學難點:
2024-11-20 00:31
【總結】江蘇省漣水縣第一中學高中數(shù)學雙曲線的標準方程(2)教學案蘇教版選修1-1教學目標:使學生進一步了解雙曲線的定義,熟記雙曲線的標準方程教學重點:根據(jù)已知條件求雙曲線的標準方程.橢圓和雙曲線標準形式中a,b,c間的關系.教學難點:用雙曲線的標準方程處理簡單的實際問題.教學過程:一、復習提問1.雙曲線的標準方程:
【總結】-*-第二章圓錐曲線與方程-*-§1橢圓-*-橢圓及其標準方程首頁XINZHIDAOXUE新知導學ZHONGNANTANJIU重難探究DANGTANGJIANCE當堂檢測學習目標思維脈絡1.了解橢圓的實際背景,理解橢圓、焦點、焦距的定義.2.掌
2024-11-16 23:27
【總結】江蘇省漣水縣第一中學高中數(shù)學圓錐曲線教學案蘇教版選修1-1教學目標:1.通過用平面截圓錐面,經(jīng)歷從具體情境中抽象出橢圓、拋物線模型的過程,掌握它們的定義,并能用數(shù)學符號或自然語言描述.2.通過用平面截圓錐面,感受、了解雙曲線的定義,能用數(shù)學符號或自然語言描述雙曲線的定義.教學重點:橢圓、拋物線、雙曲線的定義.教學難點:用數(shù)
2024-12-04 18:02
【總結】江蘇省漣水縣第一中學高中數(shù)學橢圓的幾何性質(zhì)(1)教學案蘇教版選修1-1教學目標:1.掌握橢圓的基本幾何性質(zhì):范圍、對稱性、頂點、長軸、短軸.2.感受如何運用方程研究曲線的幾何性質(zhì).教學重點:橢圓的幾何性質(zhì)——范圍、對稱性、頂點.教學難點:橢圓幾何性質(zhì)的研究過程,即如何運用橢圓標準方程研究橢圓的幾何性質(zhì).教學過程:
【總結】江蘇省漣水縣第一中學高中數(shù)學拋物線的標準方程教學案蘇教版選修1-1教學目標:掌握拋物線的定義和標準方程及其推導過程,理解拋物線中的基本量;掌握求拋物線的標準方程的基本方法;3.能夠熟練畫出拋物線的草圖,進一步提高學生“應用數(shù)學”的水平.重點難點:能根據(jù)已知條件求拋物線的標準方程.教學方法:講授法、討論法.教學過程:
【總結】1、求函數(shù)在某點的切線方程2、判斷單調(diào)性、求單調(diào)區(qū)間3、求函數(shù)的極值4、求函數(shù)的最值…導數(shù)主要有哪些方面的應用?應用一、判斷單調(diào)性、求單調(diào)區(qū)間函數(shù)的導數(shù)與函數(shù)的單調(diào)性之間的關系?判斷函數(shù)單調(diào)性的常用方法:(1)定義法(2)導數(shù)法1)如果在某區(qū)
2024-11-18 08:56
【總結】圓錐曲線與方程第二章§1橢圓橢圓及其標準方程第二章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習,經(jīng)歷從具體情境中抽象出橢圓的過程和橢圓標準方程的推導與化簡過程.2.掌握橢圓的定義、標準方程及幾何圖形,會用待定系數(shù)法求橢圓的標準方程.___________
【總結】江蘇省建陵高級中學2020-2020學年高中數(shù)學橢圓的幾何性質(zhì)(1)導學案(無答案)蘇教版選修1-1【學習目標】;?!菊n前預習】221625400xy??表示什么樣的曲線,你能利用以前學過的知識畫出它的圖形嗎?,橢圓標準方程221(0)xyabab????有什么特點31頁至第33頁,回答
【總結】江蘇省漣水縣第一中學高中數(shù)學.1量詞教學案蘇教版選修1-1班級:高二()班姓名:____________教學目標:1.通過實例理解全稱量詞和存在量詞的意義;2.掌握全稱命題和存在性命題的定義,并能判斷其真假.教學重點:對全稱命題和存在性命題的理解.教學難點:如何判斷命題的真假.教學方法:問
【總結】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學橢圓的幾何性質(zhì)課后知能檢測蘇教版選修1-1一、填空題1.x2+2y2=2的上頂點坐標是________.【解析】將方程x2+2y2=2化為:x22+y2=1,∴a2=2,b2=1,∴b=1.∴上頂點坐標為(0,1).
【總結】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學雙曲線的標準方程課后知能檢測蘇教版選修1-1一、填空題1.雙曲線x216-y29=1的焦點坐標為________.【解析】∵c2=a2+b2=25,∴焦點坐標為(±5,0).【答案】(±5,0)2.
【總結】橢圓的標準方程二、教學過程1、引入課題2、復習定義3、推導方程4、結構分析5、鞏固練習壓扁教學過程F1F2P兩焦點之間的距離叫做焦距.定點F1、F2叫做橢圓的焦點。平面內(nèi)與兩個定點F1、F2的距離的和等于常數(shù)(大于F1F2)的點的軌跡叫橢圓2、當線長小于
2024-11-18 15:25
【總結】021x(天)y(千張)311164BACD下面是某市2020年3月18日至4月20日每天最高氣溫變化的曲線圖.t(d)2034102030B(32,)C(34,)T(℃)10(注:3月18日為第一天)13
2024-11-17 17:10